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Introduction 

Blessed be you, mighty matter, irresistible march of evolution, reality ever new-born; 

You who, by constantly shattering our mental categories, 
force us to go ever further and further in our pursuit of the truth. 

Blessed be you, universal matter, unmeasurable time, boundless ether; 

You who, by overflowing and dissolving our narrow standards 
of measurement reveal to us the dimensions of God. 

T eihard De Chardin 

This book has been written as an antidote to the present-day emphasis 
on specialization in which knowledge is compartmentalized. Not only are 
the arts and sciences separated from each other, but even specialists in 
different scientific disciplines find it difficult to communicate with one 
another. One consequence of this specialization is that context, passion, 
and spiritual content are often considered irrelevant. This narrowing of 
focus has enabled us to probe deeper into ever-narrower areas of study. 
While this has enabled us to create a world of technological wonders, it has 
also encouraged us to confuse ends with means. All too often great discoveries 
are accompanied by costs which outweigh their benefits. 

Furthermore, despite successes in certain areas of science and 
mathematics, other areas, particularly those relating to the biosciences and 
cosmology, have not been amenable to standard scientific modeling. Recently 
we have begun to realize that our scientific theories and mathematical 
systems are incomplete, and we have attempted to create new models to 
explain the otherwise unexplainable. On the other hand, ancient cultures 
attempted to understand the natural world from their own perspective which 
may add novel and petviously undiscovered insights into the investigation 
and analysis of current problems. A theme of this book is that our efforts 

xvii 



xviii Beyond Measure 

to understand natural phenomena may be enhanced by broadening our 
approach to science and mathematics to include ideas from art and 
architecture, both ancient and modem. 

Writing this book has been a personal journey. My trammg is in 
engineering, the physical sciences, and mathematics. However, in 1978 I 
helped to organize an interdisciplinary effort at the New Jersey Institute of 
Technology involving the Mathematics and Computer Science Departments 
and the School of Architecture, which resulted in a new course in 
Mathematics of Design [Kapl ,  5] . In the process I discovered that common 
ideas span areas as diverse as art, architecture, chemistry, physics, and biology, 
with mathematics as a common language. My book, Connections: The 
Geometric Bridge between Art and Science was an attempt to explore this 
common language within the context of geometry and design. This book 
continues that exploration emphasizing the role of number and its 
relationship to geometry. 

Beyond Measure is written in two parts. Part I presents several examples 
in which art, architecture, music, and design with interesting mathematical 
content might have been used by ancient civilizations and primitive cultures 
to represent aspects of the natural world. I present the work of several 
researchers who use number and geometry to guide them in this endeavor. 
Sometimes valuable insights can be found in questionable theories and 
hypotheses. I am sensitive to the concern of scientists such as Carl Sagan 
[Sag) that scientifically unsubstantiated ideas may be gaining undeserved 
credibility in our society. However, there is also the danger that in the 
process of stemming the spread of spurious ideas, valuable insights will be 
eliminated from consideration. I have widened my net to include ideas that 
pass the test of being mathematically consistent, even though they are part 
of unproven theories. 

Part II focuses on several mathematical themes of current interest, such 
as the theory of chaos and fractals; the mathematical study of the growth 
of plants (also known as plant phyllotaxis) ;  how the number system 
anticipates certain naturally occurring resonances at both astronomical and 
sub-microscopic scales; how mathematical logic relates to number and to 
the structure of DNA; and the importance of the study of dynamical systems 
as a way to describe natural processes. Many patterns of geometry and 
number, and even certain specific numbers such as the golden and silver 
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means, and geometric structures such as spirals and star polygons that arise 
in Part I are crucial for an understanding of the concepts of Part II . An 
intriguing discovery is included that shows an unexpected relationship 
between chaos theory and the geometry of regular polygons. 

Chapters 13 and 14 serve as a bridge between the two parts of this 
book. These chapters examine the nature of systems that are created from 
within themselves, in other words self-referential systems. In Part I, such 
systems take the form of the creations of architects, artists, and designers, 
and patterns in nature. Part II focuses on the self-referential aspect of 
dynamical systems. In man's quest to bring order to the world of his senses, 
the invention of number is perhaps his greatest achievement. Are the patterns 
of number that we find through our observations of the world already 
present in our minds? Is number part of the self-referential apparatus of our 
brains? Questions such as these are always in the background of our 
discussions in this book. 

Much of the material described in this book is not well-known and is 
the result of my travels along the back roads of mathematical inquiry. Some 
of the material comes from scientific sources; others I have drawn from 
individuals who are unknown in scientific circles, but who have worked 
over a lifetime to develop their area of knowledge. I have also contributed 
some of my own discoveries. 

Artists and scientists both ancient and modem have searched for 
harmony in the natural world using number and geometry. While in modem 
times, these ideas have been pursued using the language of science, the 
ancient world used art, music, poetry, and myth. 

In recent years science has come to realize the limits inherent in its 
ability to model reality. Chaos theory has been developed to deal with 
systems that are entirely deterministic, yet so sensitive to initial conditions 
that changes more minute than the tolerance of the finest measuring sticks 
can have measurable effects on the systems. This calls into question 
previously formulated models which have assumed that the results of an 
experiment were intrinsically reproducible. Just as in the ancient world 
myths were created in order to give man some control over the vicissitudes 
of nature, new mathematical theories are being posited which make 
relationships based on number the key to gaining some control over 
phenomena exhibiting this sensitive dependence. In other words, chaos 
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emerges at one level but, with the help of mathematics, it is replaced by 
order at a higher level. In Part II of this book, I will attempt to illustrate 
this interplay between order and chaos. 

In an essay entitled Science and Art, the botanist Jochen Bockemuhl 
[Boc] states that the aims of art and science are almost diametrically opposed. 

"New faculties have been developed, but in either case they 
are one-sided. Artists have learned to let go of external objects 
and gain inner perception. Their works point to the inner life. 
- Scientists on the other hand, concentrate on the physical 
aspect of things and are able to handle this irrespective of 
content. They fail to realize that the experience gained in 
thinking has opened up a way to move consciously from outer 
phenomenon to inner experience." 

Bockemuhl feels that the approaches used in science and the arts can 
complement each other. This book is my effort to move the discourse of 
mathematics and science in the direction of the arts to their mutual benefit. 

Since ancient myth and history figure so strongly in Part I, I would like 
to state my perspective on their importance. The historical records of the 
ancient world are incomplete in every area. Most of the surviving records 
are little more than warehouse lists that shed little light on the thought 
processes of the people of that time. The best that we can do is piece 
together speculations of what occurred and why or how it occurred from the 
fragments that have survived the passage of time. Further clues can be 
obtained by studying myths that have been handed down to us through the 
work of artists and poets of each age. I support the belief of de Santillana 
and H. von Dechend in Hamlet's Mill [de-D] that ancient people were every 
bit as subtle in their understanding of the universe as are we. 

It is my belief that astronomical and cultural information may have 
been geometrically and arithmetically expressed through the musical scale 
and the proportions of significant ancient structures. Artists and practitioners 
of folk arts and crafts have also given expression to certain patterns which 
carry geometrical relationships despite the mathematical naivete of their 
creators. Some of these ideas will be presented in this book. 

We live in an age dominated by science and technology. To a great 
degree, we have derived great benefits from the fruits of technology. However, 
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the assumptions of our scientific paradigms lead us to believe that the 
machines that we have created and the scientific constructs of our minds 
have no limits. So long as the limitations of our scientific models are 
understood and these models are seen as tools to extend our perceptions 
we are on safe ground. It is only when we mistake the "scaffolding" for 
the "edifice" that we overreach the bounds of scientific validity [Rot]. 

I doubt whether a computer will ever be able to either compose or play 
a piece of music with the spiritual depth of a Bach partita executed by a 
great violinist. The composer and musician are engaged in processes that 
invoke mental and physical tolerances beyond measure. To create 
transcendent qualities of sound, a violinist engages in nuances of physical 
engagement with the violin beyond the limits of measure. In a similar 
way a great athlete has learned to control tolerances in timing in order 
to display the effortless mastery which so thrills the observer. Marcel 
Marceau has said that in order to create a smile in mime, the smile must 
come from within; otherwise, it is seen as a grimace. Although it may 
appear that a smile might be describable in physical terms as a mere tension 
of the cheeks and jaw, the smile cannot be abstracted from its subject 
without destroying its essence. What I am suggesting is that the things 
in our lives that mean the most may be beyond measure and reproduction 
by computers and science. This book speaks to the need to expand the 
discourse of science beyond its traditional boundaries. 

The scientific method proceeds along a two-stage process. At stage one 
the scientist is presented with a medley of observations and perceptions 
which he or she must integrate, in stage two, into a coherent theory which 
has ramifications beyond the observer's power of prediction. In stage one, 
measurement plays an important role. However, measurement brings all 
attention to a single focus and has the effect of abstracting the phenomenon 
studied from its context, which may reduce its power. This effect is 
dramatically exhibited in the quantum world where the act of measurement 
so profoundly alters the system that the measuring process must be included 
as part of the system to be measured. Even when we have been successful 
in describing the primary genetic units of a living system in terms of its 
DNA coding and have developed the means to manipulate these genetic 
structures, its meaning to the organism is incomplete. The organism responds 
as much to its context as to its coding. For example, the outward form of 
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a plant depends crucially on whether it is grown on a north or south-facing 
slope, covered by shadow or open, in moist or dry soil. By focusing on the 
gene we miss the enormous plasticity that enables the organism to manifest 
its true nature [Hol]. 

The great mystery is how perceptions at stage one lead to a unified 
concept at stage two. It is here that I believe something akin to Polyani's 
notion of tacit knowledge comes into play [Pol]. Some aspect of our minds 
and prior experiences leads us to go beyond mere appearances to a higher 
level of understanding. In the act of comprehension or discovery we move 
from a focus on some aspect of our object of study to its meaning for us. 
According to Polyani, 

"To attend from a thing to its meaning is to intenonze it, 
and . . .  to look instead at the thing (or measure it) is to 
exteriorize or alienate it. We shall then say that we endow a 
thing with meaning by interiorizing it and destroy its meaning 
by alienating it." 

It is this transcendent process, as manifested in the pursuit of knowledge in 
both the ancient and modern world, that forms the focus of this book. 

I have been told that an author of science books for the general public 
loses an ever larger part of his audience for each equation or number series 
he uses. In this respect, I have not exercised prudence. I have included all 
of the mathematical arguments necessary to present a meaningful discourse. 
Nothing has been hidden from view. Since this is meant to be more than 
a book about ancient and modern mathematics and science, it faces the 
mathematics squarely. However, I have endeavored never to go beyond the 
level of mathematics mastered in the early school years. Calculus is never 
needed (although it figures peripherally in Chapter 10) ,  and only in rare 
instances is algebra called upon. It is the concepts of number and geometry 
which provide the mathematical substance of the book. Each chapter, 
particularly in Part I, can be read either on the level of ideas or in terms 
of the mathematical detail. The ideas are occasionally subtle and require 
careful reflection on the part of both professionals and novices. This is 
particularly the case in Chapter 2 on projective geometry, Chapter 19  
on the relationship between chaos theory and number, and Chapters 22 
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and 23 on the relationship between polygons and theories of proportion 
and chaos theory. I have placed expanded mathematical discussions 
in appendices so as not to interrupt the flow of ideas. 

The chapters of this book can be read as independent essays. However 
they are also woven together by several recurring themes. Since the golden 
mean plays a large role in this book, one warning to the reader is in order. 
I have chosen to use the symbol r more in favor to mathematicians, 
throughout this book to signify the golden mean rather than the symbol lfJ 
more familiar to non-mathematicians. 

Plato stated that if one is to learn the truth of the nature of the universe, 
one must keep his eyes on the unity of all things and immerse himself in 
the study of music, astronomy, geometry, and number, the so-called 
quadrivium. This book represents my attempt to follow this prescription. It 
has been an enriching personal experience. I have l istened to the stories of 
individuals who have each spent years pursuing a single area of knowledge. 
I feel privileged to have been able to learn from them and to have the 
opportunity of distilling their work so that it can be understood and 
appreciated by others. At the same time, I have attempted to look beyond 
the individual stories to a greater synthesis of their ideas. I have discovered 
that many streams are flowing together into one. If we stand back, we can 
begin to understand how ancient knowledge and modem themes join 
together. 





Acknowledgements 

This book presents the ideas of several researchers whose work l have felt 
to be important and not sufficiently known. I have been personally enriched 
by my contact with these individuals. Some like Ernest McClain, Lawrence 
Edwards, Tons Brunes, Stan Tenen, and Ben Nicholson are known to a 
small group of followers. Others like Haresh Lalvani, Roger Jean and Louis 
Kauffman are well respected academics who have endeavored to go beyond 
the common academic discourse in their own work. Others such as Anne 
Macaulay, Gary Adamson, and Janusz Kapusta are independent researchers 
whose original work deserves recognition. Still others such as Irving Adler, 
Ezra Ehrenkrantz, Gerald Hawkins, and John Wilkes have contributed a 
single idea that has enriched the content of the book. My involvement 
with these individuals has gone beyond that of a passive observer and has 
led, in many instances, to collaborations, the writing of articles, and 
friendships. Still others, most notably, Heinz Otto-Peitgen, Theodor Schwenk 
and Joscelyn Godwin came to my attention through their writings. 

I wish to acknowledge the help given to me by Arlene Kappraff, Denis 
Blackmore, H.S.M. Coxeter, Rebeca Daniel, Stephen Edelglass and Ronald 
Kaprov who read portions of the manuscript and made helpful suggestions. 
I am also indebted to Janusz Kapusta and Doug Winning for creating many 
of the figures found in this book and to Javier Barrallo who contributed his 
beautiful fractal designs for the cover. It has been my pleasure to work 
closely with Ye Qiang at World Scientific and Louis Kauffman, the editor 
of the Knots and Everything Series. I, however, accept full responsibility for 
any errors or inaccuracies that may be found in the book. Finally, I wish to 
acknowledge the Graham Foundation for their support of my work. 

XXV 





Permission 

Figures 1.1 and 1.2 By courtesy of Elemond Milano. 

Figures 1.3 and 1.4 From Hamlet's Mill by Giorgio de Santillana and Hetha 
Von Dechend. Reprinted by permission of David R .  Godine , Publisher. 

Figures 1.5, 1.6, 1.7, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.17 and 

1.18 From Sensitive Chaos by Theodor Schwenk. Courtesy of Rudolf Steiner 
Press. 

Figure 1.8 Courtesy of the Granger Collection. 

Figure 1.16 Courtesy of the Bodleian Library , Oxford, England. 

Figure 1.19 Reprinted with permission from The Museum of Modem Art , 
New York. 

Figure 1.20 Created by John Wilkes © with the collaboration of Nigel Wells 
and Hansjoerg Plam. 

Figures 2.4, 2.5, 2.6, 2. 7 and 2.9 By permission of Rudolf Steiner 
Institute. 

Figures 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20 and 2.21 By 
permission of Floris books . 

Figures 3.3, 3 .12 and 3.16 From Myth of lnvariance by Ernest McClain 
(York Beach, ME: Nicolas-Hays 1976). Material used by permission. 

Figure 3. 7 By permission of Musee du Louve, Paris . 

Figure 3.10, 3.13, 3.14 and 3.15 From Pythagorean Plato by Ernest McClain 
(York Beach, ME: Nicolas-Hays 1978). Material used by permission. 

Figure 4.3 From Pythagorean Plato By Ernest McClain (York Beach, ME: 
Nicolas-Hays). 

Figure 4.4 John Anthony West ,  Serpent in the Sky (Wheaton, IL: Quest 
Books) . Material used by permission. 

xxvii 



xxviii Beyond Measure 

Figure 4.5 Adapted from ].A. West by S. Eberhart. 

Figure 5.2 From Manual of Harmonics by Flora Levin. By permission of 
Phanes Press. 

Figure 7. 7 By Mark Bak from the Mathematics of Design class of] ay Kappraff. 

Figure 7.12 From Pattern and Design with Dynamic Symmetry by E.B. 
Edwards (Dover 1967). 

Figures 7.13 and 7.15 Courtesy of K. Williams. 

Figure 7.14 From Architectural Principles in the Age of Humanism (John 
Wiley and sons). Reproduced by permission. 

Figures 8.10 and 8.12 Courtesy of Stephen Eberhart. 

Figures 10.2, 10.11 and 10.15 By permission of Ben Nicholson. 

Figure 11.1 From Science and Civilization in China, Vol. I by]. Needham. 

Figures 11.4, 11.5, 11.8, 11.9 and 11.10 Courtesy of Anne Macaulay. 

Figure 11.11 From Time Stands Still by Keith Critchlow (redrawn by Bruce 
Brattstrom from a photo by Graham Challifour). 

Table 12.1 Copyright © Stanley N. Tenen. 

Figures 12.1, 12.2, 12.8, 12.9, 12.10, 12.11, 12.12, 12.16, 12.17, 
12.18, 12.19, 12.20 and 12.21 Copyright © Stanley N. Tenen. 

Figures 12.13, 12.14 and 12.15 From The Knot Book by C. Adams. 
Copyright © 1994 by W.H. Freeman. Used by permission. 

Figure 12.18 From Newton's Clock by I. Peterson. Copyright © 1993 by 
I. Peterson. Used with permission of Thomas Banchoff. 

Figure 14.5 From Newton's Clock by I. Peterson. Copyright © 1993 by 
I. Peterson. Used with permission of W.H. Freeman and Company. 

Figures 16.5 and 16.6 From Another Fine Math You 've got Me Into ... by 
I. Stewart. Copyright © 1992 by W.H. Freeman and Company. 

Figures 17.2 and 17.3 From Chaos and Fractals. By permission of H.-0. 
Peitgen, H. Jurgens, and D. Saupe (1992). 

Figure 18.2 From Fractals by Feder (1988). 

Figure 18.5 From The Fractal Geometry of Nature by B. Mandelbrot. 

Figures 18.6, 18.8, 18.10, 18.11, 18.12, 18.13 and 18.14 From Chaos 
and Fractals. By permission of H.-0. Peitgen, H. Jurgens, and D. Saupe (1992). 



Permission xxix 

Figure 18.19 By George Gerster from African Fractals by R. Eglash published 
by Rutgers Univ. Press. 

Figure 18.20 Ethiopian Cross figure by C .S. Perczel from African Fractals by 
R. Eglash published by Rutgers Univ. Press by permission of the Portland Museum 
of Art. 

Figures 19.2, 19.5, 19.8, 19.10, 19.11, 19.12, 19.13, 19.14, 19.15, 

19.16, 19.17 and 19. 1 8  From Chaos and Fractals. By permission of H.-0. 
Peitgen, H. Jurgens, and D. Saupe (1992). 

Figure 19.6 and 19.7 From Beauty of Fractals. By permission of H.-0. 
Peitgen and P.H. Richter (1986). 

Figure 20.5 Computer generated by R. Langridge. Computer Graphics 
Laboratory, University of California, San Francisco © Regents University of 
California. 

Figure 20.6 Courtesy of H. Lalvani. 

Figure 20.7 a Created by Elyse 0' Grady from the Mathematics of Design class 
of Jay Kappraff. 

Figure 20. 7b Created by Eileen Domonkos from the Mathematics of Design 
class of Jay Kappraff. 

Figure 20.8, 20.9, 2.10 and 20.1 1 Courtesy of Janusz Kapusta. 

Figure 20.12 From Chaos, Fractals, and Power Laws by M. Schroeder. 
Copyright © 1991 by W.H. Freeman. Used by permission. 

Figure 20.15b From Beauty of Fractals. By permission of H.-0. Peitgen and 
P.H. Richter (1986). 

Figure 20. 18 From How Nature Works by Per Bak. Courtesy of Springer­
Verlag. 

Figure 22.2 Courtesy of Janusz Kapusta. 

Figures 23.4 and 23.5 Computer graphics by Javier Barrallo. 

Figure 24.2 Courtesy of John Wiley and Sons, Pub!. 

Figures 24.3, 24.4 and 24.5 From The Algorithmic Beauty of Plants by 
P. Prusinkiewicz and A. Lindenmayer. Springer-Verlag 1990. Used with 
permission of Springer-Verlag. 

Figure 24.6 Courtesy of N. Rivier. 



xxx Beyond Measure 

Figure 24.8 From Patterns in Nature by Peter Stevens. Copyright© 1974 by 
P. Stevens. By permission of Little Brown and Co. 
Figure 25.1 N.G. de Bruin, Kon. Ned. Akad.. Wetensch. Proc. Ser. A84 
( indaginationes Mathimaticae 4 3) 27-3 7. 

Figures 25.2, 25.4, 25.5, 25.7 and 25.8 From Chaos, Fractals, and Power 
Laws by M. Schroeder. Copyright 1991 by W.H. Freeman. Used by permission. 
Figure 25.3 P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249-251. 



Part I 
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1 
The Spiral in Nature and Myth 

1.1 Introduction 

The ocean wave ... in essence is a kind of ghost 
Freed from materiality by the dimension of time. 

Made not of substance but energy. 

Guy Murchie 

Our technological culture may learn much from primitive societies which 
express their understanding of nature in myths and rituals. 

I shall examine the symbolic role of the spiral in the myths and rituals 
of the Australian Aborigines, and the Fali of the Cameroons (cf. [Eli], 
[Gui] ) .  I shall also examine the possibility that ancient civilizations were 
aware of such astronomical phenomena as the precession of the equinoxes, 
and that the stars were pictured as rising in helices [de-0] . Finally, I will 
present an outline of the observations and ideas of Theodor Schwenk [Schw] 
on the creative force of water in the genesis of organic forms. 

1.2 The Australian Aborigines 

The Aborigines are a nomadic people who believe that in ancient times, 
known as the "epoch of the sky", gods inhabited the territory. At a later 
time, known as "the epoch of the dream" or "dreamtime", these gods were 
replaced by legendary heroes who were relegated to a mythical past time 
and to eternal idleness. The heroes, being less removed from man's experience 
than the gods, presented men with a model to emulate. Through the example 
of these heroes, men became capable of molding and controlling nature. 

3 



4 Beyond Measure 

Figure 1 . 1  Australian aborigines: Mythical formation of the dunes along a river. Schematic 
representation of the river-as-serpent (Australia). By courtesy of Elemond Milano. 

According to Guidoni the landscape was said to be formed by the mythical 
ancestor-snake. The legend suggests that when it emerged from the sea the 
snake crawled across the dry land leaving its sinuous track, a spiral form, 
imprinted there forever (see Figure 1 . 1 ). This relationship can be understood 
by looking at the undulating pattern of a river as it traverses the landscape 
and comparing it with the meandering course of a snake slithering along 
the Earth. There are many different tribal groups, each with its own 
interlocking myths which direct them along paths that often cross. The 
underpinning of tribal unity is, however, that the territory is conceived of 
as a network of sacred centers that represent the campsites along the 
wandering snakelike paths. These centers are located at water holes and the 
path takes the nomads to places of abundant food and water as the seasons 
change. These centers are thought to have been used by their mythic 
progenitors to issue from and reenter into the earth during their wanderings. 
These centers or water holes are symbolized by spirals. 

More than one group can occupy a single campsite at the same time, 
but only according to specific rules laid down in the myths. Each tribe has 
a coat of arms consisting of connected bands cut with diagonal parallel lines 
inclined alternately to the left and the right to represent a particular stretch 
of watercourse inhabited by the tribe. The whole course of the river is 
thereby synthesized into a zigzag pattern that shows the position of the 
various tribes as they disperse themselves along the river relative to each 
other and as they follow the itinerary of the culture hero in their wanderings. 

During their wanderings, the chief of the group carries a sacred pole to 
symbolize the sacred center. With it, he orients the tribe to the space and 
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points to the directions of the path through it. In one legend, it is said that 
the Achilpa tribe perished when this pole was accidentally broken and the 
people became disoriented and could not proceed. A myth tells that the 
Achilpa hero Numbakulla climbed to the heavens on the pole, again 
emphasizing the pole's connection of heaven with Earth. 

Large numbers of vital spirits are always present at the sacred locations. 
Conception is portrayed by the passing into the uterus of one of these spirit 
babies. Since every individual existed prior to his life in a specific territorial 
center, he considers himself more intimately linked to the place of his 
conception than that of his birth. 

Dances are used to reenact this creation story. In the Bamba ceremony 
of the Walbirti, a pole about three feet high is erected and, like the dance 
that follows, is intended to increase the ant species. First a hole is dug and 
water poured on the ground. The moist earth is then made sacred with 
"blood" by soaking it with red ocher. The pole is decorated with white spots 
representing ants and topped with a tuft of leaves of the bloodrot plant 
considered to be the source of life, containing a baby. The pole is placed 
in the hole, which symbolizes an anthill, while the circle and hole represent 
the encampment of ants. Dancers crawl across the symbolic campsite in 
imitation of the insect, coming closer to the center and finally symbolically 
entering the hole. This end to the dance represents the act of procreation 
that concludes every act of entering the sacred center. Viewing the ceremony 
in terms of a two-dimensional design, the center represents the hole, the 
sacred source, and the concentric circles stand for the degrees of distance 
from the center with vertical movement back to the surface of the earth 
and to the present. The combination of inwardly moving circular motion 
results in a spiral path. 

The representation of the sacred hole and the path leading to it carries 
a great many associations. The center is the point of contact with dreamtime; 
the concentric circles represent the primordial campsite, the path leading 
to it signifies the present time; the movement of ascent and descent, the 
sexual act and the male organ. The complex geometrical symbolism also 
gives a summary picture of the territory. It represents the routes the tribes 
take in their movement through the territory and the seasons, giving primary 
attention to the need for water and the relationships between the other 
tribal groups. 
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1.3 The Fali 

According to Guidoni, every interpretation of the Fali culture can be traced 
back to the mythic creation of the universe through the balanced 
correspondence between two cosmic eggs: one of the tortoise and the other 
of the toad. This subdivision between two unequal parts corresponding to 
the tortoise and the toad is also reflected in the organization of the society, 
the territory, and the architecture of the Fali. Every subsequent differentiation 
of elements within the society came about through a series of alternate and 
opposing movements or "vibrations" which guaranteed the maintenance of 
equilibrium between opposites. Every region, every group, or architectural 
element either participates in one of these opposing movements or is a 
fixed point that acts as a pivot for the motion of the parts around it. 

The form of the Fali's dwellings is an example of how this mythical 
organizing principle works. The huts are constructed with a "feminine" 
cylindrical part made of masonry and a "masculine" conical part made up 
of rafters and straw, as is shown in Figure 1 .2. Although they are stationery, 
these parts can be imagined to circle in opposite directions to each other. 

Figure 1.2 Fali: Section of a granary of bal 
do type (Cameroon) .  By courtesy ofElemond 

Milano. 
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All points participate in a kind of virtual motion except that the vertex of 
the cone is fixed. According to Guidoni, 

"It was the tortoise that gave man the model for his house. 
Under its tutelage the first couple built the primordial house, 
whose constructive and decorative detail was established for all 
time and which must be faithfully imitated in all dwellings of 
the Fali." 

The relationship between the Fali myths and the spiral will be made 
explicit in the next chapter. 

1 .4 The Precession of the Equinoxes in Astronomy and Myth 

The Earth's axis is inclined at an angle of 23Y2 degrees to the normal 
(perpendicular) line to the plane of the sun's movement ( ecliptic plane) as 
shown in Figure 1 .3 .  This normal line is also known as the axis of the 
celestial sphere. There is evidence that ancient civilizations were aware 
that the Earth's axis makes one complete revolution about the axis of the 
celestial sphere approximately every 26,000 years and that some creation 
myths depicted stars moving on spiral paths (a star rising in the East makes 
a helical path in the night-time sky around the pole star) ,  within this 
precession cone as shown for the representation of creation of the Bambara 
tribe of Africa [de-D] in Figure 1 .4a. As a result, the star marking the 
direction of north changes over time. Whereas now the north star is alpha 
Ursae Minoris, around 3000 B.C. it was alpha Draconis and in 14,000 A.D. 
it will be Vega. 

Twice each year, at the vernal and autumnal equinoxes, the Earth moves 
to a position in which it lies on the line of intersection of the ecliptic (the 
plane of the planet's movement about the sun) and the equatorial planes 
(the plane of the Earth's equator) . The vernal and autumnal equinoxes 
along with the summer and winter solstices make up what is referred to as the 
"four corners of the quadrangular Earth", as depicted by the Bambara tribe 
in Figure 1 .4b by four spirals. Angle is metaphorically used to emphasize the 
temporal rather than spatial element since angle is measured by units of 
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ECLIPTIC 
• 

NORTH POLE 
I 

I 
ECLIPTIC 

• 
SOUTH POLE 

SOLAR AND PLANETARY MOTION 

Figure 1.3 A diagram of the Precession of the Equinoxes. The symmetrical drawing shows 

that the phenomenon occurs at both poles. 
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(a) (b) 

Figure 1.4 The ways of the Demiurge during creation, according to the Bambara. (a) "In 
order to make heaven and earth, the Demiurge stretched himself into a conical helix; the 
turnings-back of that spiral are marked graphically by the sides of two angles which represent 
also the space on high and the space below." (b) "In order to mix the four elements of which all 
things are formed, and to distribute them to the borders of space, the movements of the Demiurge 
through the universe are figured by four spirals bound one to the other which represent at the 
same time the circular voyage, the four angles of the world in which the mixing of the elements 
takes place, and the motion of matter." 

time (e.g., degrees, minutes, and seconds of arc). As a result of the precession 
of the Earth's axis, the location of the l ine of the equinoxes changes. For 
this reason, the movement of the Earth's axis is referred to as the precession 
of the equinoxes. 

1 .5 Spiral Forms in Water 

The book Sensitive Chaos by Theodor Schwenk [Schw] is concerned with 
the creation of flowing forms in water and air. As Schwenk states: 

"In the olden days, religious homage was paid to water, for 
men felt it to be filled with divine beings whom they could 
only approach with the greatest reverence. Divinities of the 



10 Beyond Measure 

water often appear at the beginning of a mythology (for example, 
the Australian aborigines) .  Men gradually lost the knowledge 
and experience of the spiritual nature of water until at last they 
came to treat it merely as a substance and means of transmitting 
energy." 

Water expresses itself in a vocabulary of spiral forms. Schwenk feels 
that these forms are the progenitors of life. The meandering stream, the 
breaking wave, the train of vortices created by a branch or other obstructions 
hanging in the water, and the watery vortex extending from the water's 
surface into its depths are the raw materials of living forms. According to 
Schwenk, 

"Every living creature in the act of bringing forth its visible 
form passes through a liquid phase. While some creatures remain 
in this liquid state or solidify only slightly, others leave the 
world of water and fall under the dominion of the earthly 
element. All reveal in their forms that at one time they passed 
through a liquid phase." 

Let us take a look at how spiral forms arise in water and manifest in living 
forms. All material in quotation marks have been taken from Sensitive Chaos. 

1 .6 Meanders 

A naturally flowing stream always takes a winding course. "The rhythm of 
these meanders is a part of the nature of a river. A stream that has been 
artificially straightened looks l ifeless and dreary". 

A closer look at the flow patterns in a meandering stream shows that 
in addition to the forward motion of the stream, the flow of water revolves 
in the cross-section of the river in two contrary directions. "Let us look at 
one point in the current, for instance near the bank on the inside of a bend. 
On the surface the water is streaming outwards" as shown in Figure 1 .5 .  
The movement downstream combined with the revolving circulation results 
in a spiraling motion. Actually, two spiraling streams lie next to each other 
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Figure 1 .5 Representation of the meander of a 
river showing the revolving secondary currents 
in the bed of the stream. 

along the river bed and form a kind of twisted rope of watery strands. To 
be more exact, rather than being strands, the water forms entire surfaces 
that twist together. According to Schwenk, 

"These movements are the cause of varying degrees of erosion 
of the banks of the river. The outer banks are always more 
eroded than the inner, which tend to silt up. The material 
scooped away from the outer bank wanders with the spiraling 
current to the inner bank further downstream and is deposited 
there. Because of this process the river eats its way further and 
further outwards at the outer bank, swinging from side to side 
as it flows, thus making the loops more pronounced . . .  A 
meandering motion lengthens the course of the river and thus 
slows down the speed at which it flows. In this way the riverbed 
is not hollowed out, and the ground-water reserves are left 
intact." 
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Figure 1 .6 Many unicellular water animals have incorporated the spiraling movement of water 
in their shapes (from Ludwig, after Kahl). Courtesy of Rudolf Steiner Press. 

Figure 1 .6 illustrates two unicellular water animals that have incorporated 
the spiraling movement of water in their shapes. They usually propel 
themselves along like a meandering stream with a screw-like movement. 

1 .  7 Wave Movement 

A stone in a stream or a gentle breeze on the ocean will cause the water 
in its proximity to respond immediately with rhythmical movement. The 
patterns that arise from these external influences are characteristic of the 
particular body of water, be it a lake, a stream, or an ocean. 

In spite of the ceaseless flow of the stream and its swirling nature as it 
moves around stones and boulders, the flow pattern is stationary. The same 
wave forms remain behind the same rocks. On the other hand, in the open 
sea, the wave form wanders across the surface, allowing the water to remain 
in the same place. As an experiment, throw a piece of cork in the water and 
watch it bob up and down while the waves sweep over the surface. Schwenk 
notes that the wave is a newly formed third element at the surface of 
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contact between water and wind. The wave is a form created simply out of 
movement. In this sense it is l ike all organic forms, which in spite of 
chemical changes, remain intact as entities. 

Wave forms are replete with complex movements of different types. For 
example, they sort themselves out in different wavelengths, with the longer 
wavelengths moving faster than the shorter. Also, as the wave passes an 
element of water, the element rises and falls in a circular movement. Flowing 
movements can also be superimposed on a wave, so that as the wave moves 
forward, a strong wind can cause the moving current on the back of the 
wave to move faster than the wave and overshoot the crest and break. In 
this process, all that is rhythmic in a wave becomes altered. It takes on a 
spiral form interspersed with hollow spaces in which air is trapped. 
"Whenever hollow spaces are formed, water is drawn into the hollows in 
a circular motion, and eddies and vortices arise". This presents us with a 
new formative principle: 

The wave folds over and finally curls under to form a circling vortex. 
This is illustrated in Figure 1 .  7 and also by the famous painting "The Great 
Wave" by Katsushika Hokusai, shown in Figure 1 .8. Elements that until 
now were separate unite in turbulence and foam. 

Figure 1. 7 A wave curls over to form a vortex. 
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Figure 1 .8 "The Great Wave" by Katsuhika Hokusai. 

Figure 1 .9 In the rigid chrysalis of a butterfly, 
growth takes place at varying speeds. This leads 
to folding processes in preparation for the 
forming of the organs (from Eidmann after 
Weber). Courtesy of Rudolf Steiner Press. 

The different speeds of growth or development in organic forms also 
show evidence of the same folding. This is most evident in the process in 
which organs are developed. Schwenk offers the development of the pupa 
of a butterfly as an example. As shown in Figure 1 .9, "the organs, which at 
first are curled up, are pushed out when fully developed and appear as 
feelers, limbs, etc". 
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1 .8 Vortices and Vortex Trains 

Wave-forming motion not only occurs between air and water but also in 
the midst of water, as when two streams of water flow past each other at 
different speeds. For example, in a naturally flowing stream we can observe 
the patterns formed in the water at a place where a twig from a bush hangs 
into the water. The flowing water is parted by the obstructions and reunites 
when it has passed. But at the same time, a series of small vortex pairs, 
spiraling in alternate directions, arise as shown in Figure 1 . 1  0, and travel 
downstream with the current. The vortices in this series or "train" of vortices 
are evenly spaced in a rhythm determined by the obstruction. These vortices 
have the same effect as the breaking waves. The boundary of the vortex 
train entraps the stagnant fluid on the inside of the boundary and mixes it 
with the water of the swiftly moving stream exterior to the boundary. In 
this way, fluids of different states of motion on either side of the boundary 
are gradually combined. 

"A particularly clear picture of a train of vortices is exhibited by the bony 
structure in the nose of a deer, shown in Figure 1 . 1 1 .  Large surfaces are thus 
created past which air can stream, giving the animal its acute sense of smell". 
In Figure 1 . 1 2 ,  the whole field of motion of a train of vortices is shown. 

Figure 1.10 A distinct train of vortices (after Homann). Courtesy of Rudolf Steiner Press. 

Figure 1. 1 1  Enlarged detail of the bony 
structure in the nose of the deer. 
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Figure 1 . 1 2  A vortex train seen as a ball and 
socket joint with flow lines passing straight 
across joint. 

Figure 1 . 1 3  Spongy bone structure in the 
human hip joint. 

"Single vortices are clearly separated from one another by a dividing 
line or surface. The vortices are not fully formed, but the surrounding 
substance pushes into the space created by the moving rod. It first enters 
from one side then from the other, making visible the strict rhythm of 
vortex formation. The boundary of this advance can be seen as a kind of 
'joint' where 'ball and socket' lie opposite one another. Closer inspection 
shows that flow l ines pass straight across the boundary surface of this joint". 

In a similar manner, the spongy structure that makes up the joints of 
humans and animals closely follows the form of a single link within a 
vortex train, as Figure 1 . 1 3  illustrates. The stress l ines, take the place of 
flow lines in fluids, running directly across the gap. Striking images of a 
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Figure 1.14 Design on a palm leaf (May River, 
New Guinea) ,  Volkerkundliches Museum, 
Basel. 

vortex train have also been found in primitive designs, such as the one 
shown in Figure 1 . 14. 

1. 9 Vortex Rings 

Aside from the rhythmic processes of vortex formation at the surface of the 
water, there is also the three-dimensional nature of the vortex to consider. 
As shown in Figure 1 . 15 ,  "every vortex is a funnel of downward suction. All 
flowing water, though it may seem to be entirely uniform, is really divided 
into extensive inner surfaces, each rotating at a different speed. In 
the formation of vortices, these surfaces are drawn into the whirlpool". The 
inside of the vortex turns faster than the outside, and corkscrew-like surfaces 
appear on the surface of the vortex as the result of the disparity of the 
motion. The vortex is a figure complete in itself with its own forms, rhythms, 
and movements. 

Figure 1 .15  Vortex funnel. 
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Figure 1 . 1 6  System of vortices with which Descartes sought to account for the motion of the 
heavenly bodies consisted of whirlpools of ether. In the case of the solar system the vortex 
carried the planets around the sun (S). Irregular path across the top of the illustration is a 
comet, the motion of which Descartes believed could not be reduced to a uniform law. 
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Figure 1 . 1 7  Spiral formation i n  snails and shells. 

The vortex is like an isolated system closed off from the body of water 
around it. For the most part, the vortex with its different speeds follows 
Kepler's Third Law in which a planet moves fast when near the sun. In fact, 
Schwenk suggests that the vortex is a miniature planetary system with the 
sun corresponding to its center. The exception is that the planets move in 
slightly eccentric orbits in contrast to the circular vortex motion. It is 
interesting that Descartes' model of the universe consisted of vortices made 
up of the fine matter of "ether" with the stars at the center.. Descartes' 
sketch in Figure 1 . 1 6  shows the planets being carried about in the sun's 
vortex S, and the moon being carried around the earth in the same way. 

"The vortex has another quality that suggests {astronomical] 
connections". If a small floating object with a fixed pointer is allowed to 
circulate in a vortex, it always points in the direction that it was originally 
placed, remaining parallel to itself. In other words, it is always directed to 
the same point at infinity, "just as the axis of the Earth points in the same 
direction as it revolves around the sun". The center of the vortex would 
rotate at infinite speed if this were possible. Since it is not, it instead 
creates a kind of negative pressure, which is experienced as suction. 

Many forms in the organic world manifest themselves in the form of a 
vortex. For example, the twisting antlers of a horned animal, snails and 
shells such as those shown in Figure 1 . 1  7, some spiral formations in the 
plant world, and most strikingly, the human cochlea. Figure 1 . 1 8  shows the 
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Figure 1 . 18 Fibers in the auditory nerve, 
arranged spirally just like a liquid vortex, as 

though picturing an invisible vortex of forces 
(after De Burlet). 

Figure 1.19 "Starry Night" by Vincent Van Gogh. About this affirmation ofthe swirling 

harmony between the forces of nature, Van Gogh wrote: "First of all the twinkling stars vibrated, 
but remained motionless in space, then all the celestial globes were united into one series of 
movements . . .  Firmament and planets both disappeared, but the mighty breath which gives 
life to all things and in which all is bound up remain [Pur]. 



Chapter I The Spiral in Nature and Myth 2 1  

fibers in the auditory nerve arranged spirally just like in a liquid vortex. 
However, it is literature and art that has captured the essence of the vortex. 
Edgar Allen Poe's classic tale, "A Descent into the Maelstrom", presents a 
palpable description of the abyss at the base of the vortex and a description 
of the chaotic multitude of inner surfaces of the vortex. Van Gogh's 
art portrays nature in a perpetual state of movement. His masterpiece 
"Starry Night", shown in Figure 1 . 1 9, best dramatizes the place of the 
vortex in nature. As J ill Puree [Pur] observes, 

"Not only do the clouds spiral into a Yin Yang formation 
(a pair of alternately spiraling vortices) ,  but the opposing forces 
of sun and moon are unified. For Van Gogh, this was a decisive 
moment of union between inner self and outside world." 

1 . 1 0  Three Characteristic Features of Water 

The preceding discussion illustrates three characteristic features of water. 
The first is the activity of water in all metabolic processes. The second is 
its close connection with all rhythmic processes. The third, lesser known 
characteristic, is the sensitivity of water's boundary surfaces, which Schwenk 
sees as a indication that water is a sense organ of the earth. 

We have seen evidence of the metabolic function where water chums 
up silt from a river bed and redeposits it, or where a breaking wave 
incorporates the air at its boundary into itself. The rhythmic patterns are 
evidenced in the meanders of a river and moving vortex trains. The 
sensitivity at boundary surfaces is illustrated by the influence of the smallest 
environmental factors such as a mild breeze or whether it is day or night, 
on the formation of waves or the creation of vortex trains. This sensitivity 
is also expressed in such structures as the deer's nose, or the antelope's 
horns. The vortex itself is a mechanism that opens up the inner surfaces of 
water to the influences of the moon and the stars. This is due to the 
disparities of fluid velocity from the center to exterior of the vortex. 

All of these functions are manifested in the world of living organisms. 
In humans, the intestines best represent an organ of metabolism; the heart, 
a center of rhythmic organization; the ear, a sensory organ. These three 
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organs are shaped by patterns similar to those found in flowing water. 
Though, as Schwenk shows, just as the three characteristics do not specialize 
to any of the fundamental patterns of the movement of water, they also do 
not specialize to any particular organ. In each movement of water and in 
each organ, all three are in evidence. 

1 . 1 1 The Flowform Method 

It was George Adams and Theodor Schwenk, who with a number of others, 
founded the Institute for Flow Sciences at Herrischried in South Germany. 
Adams was interested in investigating the effect of path curves (a family of 
curves discussed in the next chapter and first described by Felix Klein in 
the 19th century and which Adams considered to relate intimately to organic 
forms) upon the quality of water [AdamG]. In this chapter, I have described 
some of water's formative capacities and some of Schwenk's profound 
conclusions regarding the place of water as a mediator between heaven and 
Earth. A water quality test known as the Drop Picture Method was devised 
in [Schw-s]. Work has been continued by his son Wolfram Schwenk at the 
Institute of which he became Director. 

In 1970, John Wilkes, who had been involved at the Institute since its 
beginnings, discovered a technique which he later named the Flowform 
Method [Rie-W]. This Method has to do with the generation of rhythmical 
processes in streaming water, achieved by the design of very specific 
proportions within Flowform vessels which resist the flow of water to the 
correct degree. It is namely resistance which leads to rhythm in all manner 
of contexts. All l iving organisms are dependent upon rhythms and these are 
in tum carried by water or water-based fluids, without which no organism 
can survive. 

The research and development was continued at Emerson College, Forest 
Row, Sussex, England where, by the mid-seventies the Flow Design Research 
Association was founded. In collaboration with associates, projects have 
since been carried out in some thirty countries. The main emphasis of the 
work is related to supporting water's capacity to sustain life. Rhythm tends 
to sensitize the function of water in its activity as mediator between 
surroundings and organism. Incidental to this, oxygenation is achieved, 
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Figure 1 .20 Sevenfold Flowform Cascade. 

efficiency being related to the movement dynamic of the Flowforms in 
question. Naturally, the potentially vigorous lemniscatory or figure-eight 
movement activity with interposed chaos can be utilized for mixing processes 
of many kinds. 

None of this activity can take place without the influence of surface. 
The Flowform Method also enables research to continue in terms of Adams' 
original hypothesis regarding the influence of surface and more specifically 
pathcurve surfaces upon the quality of water. Rhythmic lemniscatory 
movements make possible an intimate relationship of water to the surface 
over which it can repeatedly spread as a thin film. Figure 1 .20 illustrates an 
exploration of a spectrum of rhythms in the so-called Sevenfold Flowform 
Cascade created by Wilkes with the collaboration of N igel Wells and 
Hansjoerg Palm. The diagram shows the flowpath through a similar earlier 
edition of the cascade indicating a metamorphosis in the mathematical 
form known as the lemniscate. This "organ of metamorphosis for water" 
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relates closely to primitive forms of the heart with their sequences of cavities 
which tend however to remain similar to each other, and opens up questions 
regarding the rhythmic regulatory function of the heart such as [Mari] , 
[Men]. 

1 . 12  Conclusion 

The spiral lies behind the patterns of interconnectedness and the genesis of 
forms exhibited by the natural world. It is not surprising that the spiral was 
chosen as an archetypal form by primitive societies in their art and rituals. 
In the next chapter the spiral arises once again, this time as a fundamental 
geometrical form. 



2 
The Vortex of Life 

2. 1 Introduction 

To see a World in a Grain of Sand 
And Heaven in a Wild Flower 

Hold Infinity in the palm of your hand 
And Eternity in an hour. 

"Auguries of Innocence " by William Blake 

Euclidean geometry ( the geometry that we learned in school) has been the 
primary tool in formulating mathematical models of the physical world. 
However, there is a more general geometry, namely projective geometry, of 
which Euclidean geometry is a special case. Drawing on the work of Lawrence 
Edwards [Edwl ,2 ,3] , I will show that projective geometry can be used to 
describe the shapes of plants and other biological forms, as well as the 
watery vortex. Again, the spiral plays a key role in these descriptions. 

The next section describes the general subject of projective geometry 
and then, in the following five sections, presents all of the fundamentals 
needed to understand Lawrence Edwards' application of projective geometry 
to plant form. The chapter concludes with a brief discussion of how the 
ideas of Guidoni, Schwenk and Edwards relate to each other. The chapter 
is written to inform mathematically sophisticated readers. Yet, it should 
also be accessible ,  with some difficulty, to mathematically inclined 
non-professionals. 

My interest in presenting this material lies in the ability of projective 
geometry to represent natural form. In Edwards' description of organic form, 
all points that make up the form are in a state of flux. Nevertheless the 
overall form is maintained. Thus biological form is seen as a dynamical 
system. 

25 
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2.2 Projective Geometry 

When a two dimensional object is projected by a point source of light from 
one plane to another, a projective image results. The object and image are 
considered to be projectively equivalent. Artists of the fifteenth century such 
as Brunelleschi, Albrecht Alberti, and Leonardo da Vinci developed the art 
and mathematics of projections and understood that it is connected with 
vision. The eye projects a scene from the horizontal plane to an imaginary 
screen in front of the body. Rays of light can be thought to connect points 
on the scene to points on this imaginary plane, in which case the scene is 
viewed in perspective. When a canvas replaces the imaginary screen, the 
scene may be rendered by recreating it at the points where the rays pass 
through the canvas, as shown in Figure 2. 1 .  When the eye is at point 0, 
this projective mapping of scene to canvas transforms the infinitely distant 
line of the horizon onto a real line h on the canvas. Also, parallel lines 
receding from the viewer towards the horizon appear on the canvas as the 
oblique lines l meeting at some point on the horizon line. 

The subject of projective geometry pertains to three primary elements: 
points, lines and planes, and the properties of these elements that are preserved 
under projective transformations. Projectively equivalent objects and images 
are considered to be identical in projective geometry just as congruent 
figures are indistinguishable in Euclidean geometry. The three primary 
elements are considered as separate entities; a line is not considered in the 
axioms of projective geometry to be a sequence of points, but an entity in 

Figure 2.1 A road I receding to infinity depicted as converging to a point on the horizon line 

h of an artist's canvas. 
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itself. Also points and lines are considered to have equal status. In projective 
geometry, the line at infinity has as much reality as any other line. After all, 
it corresponds to the horizon and is projectively mapped by the artist to the 
horizon line of a painting. We are also justified in saying that every pair of 
lines has a single point in common; when the lines are parallel the common 
point is a point on the line at infinity. Each line is considered to have a 
single point at infinity. Imagine a rocket ship moving towards infinity along 
the right side of a line. If it continued through the point at infinity and kept 
going, it would return to its origin from the left side of the line. By pivoting 
a line about a single point, as shown in the so-called pencil of lines of 
Figure 2.2, the point at infinity on the line sweeps out the line at infinity. 
Alternatively, the line could be considered to have infinite points at either 
end, in which case there is an infinite point in the direction of each point 
of the compass and these points sweep out a circle at infinity. The line and 
circle at infinity are seen to be identical if points on the circle 1 80 degrees 
apart are considered the same ( identified with each other) .  One of the most 
valuable features of projective geometry is its ability to make the infinite 
accessible to human thought; points and lines at infinity have the same 
reality as those from the finite realm. 

CX) 

CX) CX) 

CX) 

Figure 2.2 A pencil of lines indicating the point at infinity on each line. 
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It is well known that depending on how a right circular cone is sliced 
by a plane, the boundary of the cross-section is either a circle, ellipse, parabola, 
or hyperbola, the so-called conic sections. Since a point source of light can 
be thought of as being located at the vertex, all conic sections are projectively 
equivalent. Each conic can be viewed projectively as a circle by singling out 
a special line in the plane, as shown in Figure 2.3. Figure 2 .3a represents 
a projective view of an ellipse, Figure 2.3b a parabola, Figure 2 .3c an 
hyperbola, while Figure 2 .3d represents a circle when the special line is at 
infinity. When the special line is mapped to infinity, the usual pictures of 
the conics reveal themselves. The richness of projective geometry, in contrast 
to Euclidean geometry, is due to the fact that in Euclidean geometry the 
special line is always taken to be the line at infinity. As a result, conics 
always assume their familiar forms whereas projective geometry always has 
a representational flexibility. Yet, many of the theorems of Euclidean 
geometry are found to hold in the more general context of projective 
geometry. 

Crucial to an understanding of projective geometry is the concept of 
duality. The axioms are so constructed that in two-dimensional space, their 
validity is unaltered whenever point and line are interchanged in any 
statement or theorem, while in three-dimensional space point and plane 
are interchanged while line is retained. Thus the statement, "any two points 

0 
A B c 

LINE AT INFINITY 

f 1 f t 1 

0 
D 

Figure 2.3 When the special line is projectively mapped to infinity, the circles become (a) 
an ellipse, (b) a parabola, (c) an hyperbola, (d) a circle. 
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contain a single line" ( i.e. , through any two points a single line can 
be drawn) ,  is equivalent to "any two lines contain a single point" ( i.e., any 
pair of l ines define a unique point of intersection) .  Likewise, "three planes 
with no common line contain a unique point" is equivalent to "three 
points not all on the same l ine contain a unique plane" { i.e . ,  three 
non-colinear points define a plane) .  

At one time, projective geometry was part of the repertoire of all 
mathematicians. Today, only a few specialists remain connected to this 
subject, and they relate to the subject in, primarily, an algebraic manner. 
In this brief introduction, we shall emphasize a constructive approach as 
can be found in several excellent books [Cox4], [Edw2], [Whi] , and [YouJ]. 
It is my feeling that the quiet contemplation of projective constructions 
can be enlivening to the mind. 

2.3 Perspective Transformations on the Line to Points on a Line 

One of the most elementary transformations in all of mathematics is the 
mapping of the points on line x to points on line x' from a point 0 not on 
lines x and x' , as shown in Figure 2.4. A typical point A on line x and A' 
on line x' share a common line from the pencil of lines centered at the 
point of projection 0. Such a projective transformation is called a 
perspectivity. 

In Figure 2.5 the dual perspectivity is shown. Here two pencils of lines 
centered at X and X' are projected onto l ine o. Lines a and a' meet at a 
point on the line of projection o. 

The perspectivity in Figure 2.4 is entirely specified by arbitrarily choosing 
two points A and B and their transformed points A' and B' since this 
determines lines x, x' and point 0. In this case, x is the line through AB, 
x' is the line through A'B', and 0 is the meeting point of AA' and BB'. 

Referring to Figure 2.4, one can see certain special points of the 
transformation. The intersection of x and x' is mapped to itself and is the 
only fixed point of the transformation. Also, the line through 0 parallel to 
x maps the point at infinity on line x to the point where this line intersects 
x' . Likewise, the point at infinity on x' is mapped from point the on x where 
the line through 0 parallel to x' intersects x. 
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�0 

x' 

Figure 2.4 A perspective transformation of points. 

Figure 2.5 A perspective transformation of lines. 

Although metric properties such as distance between points are not 
generally preserved by perspectivities, a somewhat obscure relation between 
any four points A, B, C, D, and their transforms is preserved, namely: 

A = AB 
BC 

AD 
DC (2. 1 )  



Chapter 2 The Vortex of Life 3 1  

This relationship is known as the cross-ratio. It  is o f  fundamental 
importance to projective geometry. In fact, projective transformations can 
be defined to be those transformations of points and lines that preserve 
cross-ratio. It should be mentioned that this definition of the cross-ratio 
assumes successive points are in the order A, B, C, D. There are 24 different 
orderings of these four points, and the cross-ratios in each of these definitions 
are also preserved. As a matter of fact, we will find the ordering DBAC and 
its cross-ratio 

A- =  DB 
BA 

most relevant in what follows. 

DC 
CA 

2.4 Projective Transformations of Points on a Line to 

Points on a Line 

(2.2) 

The notion of the projective transformation of the points on line x to the 
points on line x' can be made more general by first relating the points on 
lines x and m by a perspectivity with respect to point 0, and then relating 
the points on m and x' by a perspectiviry with respect to 0' as shown in 
Figure 2.6. In a similar manner, x can be mapped to x' via a series of 
intermediate lines m, m' , m", etc. Any such sequence of perspectivities is 
called a projectivity. 

It can be shown that any three points arbitrarily chosen on lines x and 
x' can be mapped to each other under a projectivity. Since corresponding 
lines from the pencils of lines through 0 and 0' meet on a common line 
m, Figure 2.6 also represents a perspectivity of these pencils of lines of the 
kind shown in Figure 2.5. However, for a general projectivity, lines OA and 
O'A', OB and O'B' , OC and O'C' do not meet on a common line. It is of 
fundamental importance to the study of projective geometry that these 
pairs of lines do meet on a conic section. (Note that a pair of straight lines 
can be thought of as the extreme case of an hyperbola.) 

For a special class of projectivity called a co-basal projectivity, x and x' 

are the same line as shown in Figure 2. 7 where A transforms to A', and B 
transforms to B' on line x. The transformation is carried out by first 
transforming A to T on m through 0, and then transforming T back to A' 
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Figu<< 2.6 A pmj«rlv< """'f<nm><ion of pointi (it � '"" ' pe<'P"'iV< ,.,.fonnation of 

tines). 

.... ... o' .... . 

X 
y 

Figure 2.7 A co-basal projective transformation. 

X 

Figure 2.8 A co-basal transformation generat 

from a conk (circle) . 
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through 0'. In a similar manner, B is transformed first to U on line m 
through 0 and then back to B' through 0'. It is evident that for these 
transformations, two points are generally fixed, the point X where lines m 
and x intersect, and the point Y where 00' intersects x. Since, in a general 
projective transformation, OA and O'A' meet on a conic m, the fixed 
points can also be pictured as the intersection of a line x with a conic m 
(circle) , as shown in Figure 2.8, where A is projectively transformed to B 
on x by first projecting A to T on m through 0, and then transforming T 
back to B through 0'. In a similar manner, B is transformed to C via point 
U on m, etc. on line x. Conversely, a co-basal projectivity can be generated 
from an arbitrary conic (a circle in this figure) m and a base line x intersecting 
it, by choosing two points 0 and 0' on the conic and relating the intersection 
points on the base line of pairs from 0 and 0' that meet on the conic. It 
follows from glancing at Figure 2.8 that this co-basal projectivity has two 
fixed points X and Y. Co-basal projectivities have one fixed point when the 
base line is tangent to the conic, or no real fixed points when the base line 
and conic have no real intersection points (we shall see that it then has two 
imaginary fixed points) .  

2.5 Growth Measures 

Now that we have defined a co-basal projective transformation of a 
line, let's see what sequence of points is the result of applying such a 
transformation repeatedly to an arbitrary point A on line x. Such a sequence 
of points is called the trajectory of A under this transformation. Referring 
to Figure 2.9, point A transforms to A', which we call B by first projecting 
to line m through 0 and then projecting the resulting point back to x 

through 0'. Point B, in tum, transforms to C and C to D, etc. Such a 
trajectory is called a growth measure. If A begins near the left fixed point X 
and moves toward Y, then the trajectories start out with small step sizes, 
which increase in the mid-section between the fixed points and then decrease 
in size as they approach Y. To reach Y would take an infinite number of 
steps. If the order of the projections through 0 and 0' are reversed, then 
the trajectory moves from A to the left fixed point X, which it also reaches 
after an infinity of steps. Thus, the entire growth measure represents a 
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Figure 2.9 A growth measure. 

doubly infinite set of points. Using the points X, A, B, Y to define the cross­
ratio, or multiplier as we shall refer to it, from Equation (2.2): 

A = BX : AX
. 

YB YA 
(2.3 ) 

Therefore, once the fixed points are chosen, the cross-product and hence 
the entire trajectory is determined by choosing the position of A and B. 
The multiplier of the reverse transformation is determined by the sequence 
YBAX, and it is the inverse 1/). of the original multiplier. 

Let's see what the effect on the growth measure is if we project the 
right fixed point Y to infinity. This is done by drawing an arbitrary line b 
and drawing a line through Y parallel to b as shown in Figure 2 .10. If we 
project the trajectory of point A onto b from an arbitrary point on the line 
through Y, then X projects to a finite point X1 on b, while Y projects to the 
infinite point on b and, since r� approaches the value of 1 as y approaches 
infinity, the cross-ratio or multiplier reduces to A =  ;:�: = i�: = . . . , which 
identifies the trajectory as the familiar geometric sequence (a sequence of the 
form a, ar, ai, ar3 , • . .  , in which the ratio between adjacent terms is 
constant, i.e. ,  r in this case) .  In other words, growth measures can be 
viewed as double geometric series seen in perspective. Also, we see that if 
)., = 1 then all points of the growth measure are left unchanged, i.e., the 
growth measure is the identity transformation. 
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X 

Figure 2.10 A growth measure with one fixed point mapped to infinity. 

Next, consider the case of a growth measure in which the line through 
0 and 0' meets at the left fixed point X. Here, the two fixed points 
coalesce into one called a double point and the growth measure is called a 
step measure. This corresponds to the case in Figure 2.8 of a tangent line to 
the circle. In a manner similar to what we did for growth measures with two 
fixed points, we can project a step measure onto an arbitrary line, so that 
the double point is projected onto the point at infinity. We then discover 
that a step measure is the perspective image of an evenly spaced trajectory 
of points on line (an arithmetic series) .  

So we see that, even though projective transformations do not have 
obvious metric properties, they represent geometric models of multiplication 
in the case of growth measures and addition in the case of step measures. 
From the point of view of geometry, growth measures are far more likely to 
occur than the limiting case of a step measure. It is also interesting that it 
is the geometric series that manifests in the organic world. It is well known 
that shells of sea animals such as the Nautilus and the horns of animals 
grow according to logarithmic or equiangular spirals. Equiangular spirals are 
governed by the principle that radii from the center of the spiral at equally 



36 Beyond Measure 

Figure 2.1 1  (a) Vertex points of an equiangular (logarithmic) spiral lie at a double geometric 
series of distances from the center; (b) a spiral is constructed from the vertex points. 

spaced angles about the center from a geometric sequence, as shown in 
Figure 2 . 1 1 .  These curves were referred by [Coo] as "curves of life". 
We shall have more to say about this important curve in Sections 2.8, 7.5 
and 1 8.4. 

2.6 Involutions 

There is one kind of growth measure that deserves special mention. It is 
depicted in Figure 2. 1 2. Here, 0 and 0' are on opposite sides of line m, and 
they are arranged so that point A transforms to B and B transforms back to 
A Such a transformation is called an involution. By reversing the order of 
0 and 0', we obtain another involution that also transforms A to B and 
B back to A Both of these transformations are called breathing involutions 
since the movement is back and forth across either of the fixed points with 
related points close to one of the fixed points playing the role of shallow 
breaths nested within the deep breaths of the point pairs more distant 
from the fixed point. In this sense, involutions are analogous to mirror 
reflections where the image approaches or recedes from the mirror as does 
the object. 

Consider the four points: A, 0, B, 0' in Figure 2 . 12 .  A complex of six 
lines can be drawn through these four points. A cycle of four of these lines: 
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- -

y 

Figure 2.12  An involution sets up a pair of points A, B harmonic with respect to fixed 

points X, Y. 

AO, OB, BO' and O'A forms a quadrilateral. The other two lines 00' and AB 
join opposite vertices of the quadrilateral and are considered to be its diagonals. 
The two diagonals intersect at the fixed point Y. On the other hand, 
opposite lines of the quadrilateral intersect in two additional points P and 
Q and line PQ intersects AB at the other fixed point X. It is fundamental 
to projective geometry that A and B are harmonic with respect to X and Y 
which means that the cross product of BXAY equals - 1 .  Note that a 
composition of two successive applications of the involution results in the 
identity with A, =  1 .  

I t  is an interesting fact of projective geometry, and one that can be 
tested by construction, that if a single pair of points are found to be in 
involution then all points of the line are also in involution, or harmonic, 
with their transforms. Involutions carry with them another metric property, 
namely, the point harmonic to the point at infinity with respect to X and 
Y is the midpoint between X and Y. Any point between X and this midpoint 
is in involution with a point on the other side of X which serves as the 
center of the involution, whereas a point between the midpoint and Y is in 
involution with a point on the other side of the center, Y. Therefore, 
involutions can be directly correlated with the fixed points. Edwards has 
shown that involutions provide the key to understanding growth measures 
when the fixed points are not visible (see Section 2. 7) .  
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Given two fixed points X and Y, there are an infinity of growth measures 
that move between the two points. For example, any point A' between A 
and B of the original growth measure leads to another trajectory with the 
same fixed points. Likewise, points 0 and 0' can be moved to different 
locations so long as 00' passes through point Y, or equivalently, 0 and 0' 
can be moved to different positions on the conic (circle) in Figure 2.8. In 
fact, the collection of growth measures with fixed points X and Y form what 
is known in mathematics as a group. We have here a dynamic picture of a 
line. The line is all motion with points forever changing their positions yet 
with the configuration of the trajectory remaining unchanged. Only the 
fixed points are motionless. 

2. 7 Circling Measures 

To complete the picture, we must also account for growth measures of 
co-basal projectivities for which there are no real fixed points. Edwards calls 
such growth measures circling measures. They are set up by transforming an 
evenly spaced set of lines from a pencil of lines centered at a point. For 
example, the 1 8  lines in Figure 2 . 13 are spaced 10  degree apart and each 
line undergoes a transformation of 60 degree in a clockwise direction. A 
circling measure is set up by the points of intersection of an arbitrary line 
such as the one shown in Figure 2 . 13 ,  with this pencil. Unlike a growth 
measure, all points on this line are in motion. There are no fixed points. 
If we consider the line of the pencil that intersects the arbitrary line at 
right angles, that is where the movement along the line is "slowest" and 
this can be related to the imaginary value of the "fixed point". If the 
arbitrary line is moved towards the center in a perpendicular direction 
the movement slows down and comes to a halt when the line intersects 
the center. This is how a real fixed point emerges from the imaginary. It 
would require more space than we have in this chapter to describe these 
projectivities in further detail, so we direct the reader to Projective Geometry 
[Edw2] and summarize some of the important results. 

We have already seen in Figure 2.8 that a conic and a base line cutting 
it sets up a growth measure on the line with the intersection points of conic 
and line as the fixed points. If the line and the conic do not intersect in 
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Figure 2.13 A circling measure. 

"real points", they intersect in imaginary points. We shall now see how these 
imaginary fixed,Points come about. Consider a unit circle i + y2 

= 1 and 
the line y = ..JZ • Solving these equations for the intersection points, we 
find that (X, Y) = (± i, .J2 )  where i = � (see Sections 13 .6 and 19.3 for 
a discussion of imaginary numbers) .  So we can say that, in some sense, the 
circle and the line share these two points. Let's now consider a circle and 
a series of parallel l ines going to infinity. Each l ine shares a pair of points 
with the circle. We shall denote the two imaginary points on the line at 
infinity as I and ]. Of course all circles share equally well these same points 
I and ]. 

Circling measures on a line induced by a circle or other conic can be 
created by the identical construction shown in Figure 2.8. The fixed points 
of this measure will be the two imaginary intersection points, I and ] , and 
there is, once again, a group of circling measures that have the same two 
fixed points. In order to make these imaginary points and lines tangible, 
Edwards prefers to deal with the two involutions set up on this line instead 
of the imaginary points that correspond to them (the details are described 
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in [Edw2] ) .  In Figure 2. 13 ,  transformations of a line through 90 degree in 
either a clockwise or counterclockwise direction results in an involution 
since two successive mappings of this kind brings the line back to itself. 
This transformation is known as a circling involution. 

2.8 Path Curves 

The remainder of this chapter deals with the mathematics of projective 
transformations and its application to generating a family of curves known 
as path curves. According to the research of Lawrence Edwards as described 
in his books, Field of Form [Edw1 ] ,  Projective Geometry [Edw2] , and 
The Vortex of Life [Edw3] ,  these curves are close approximations to 
the spiral shapes of plants and other biological forms, as well as to the 
watery vortex. 

Up to now we have been considering projective transformations of 
points on a line to points on a line, or lines in a point to lines in a point. 
Projective transformations of the plane that map points to points and lines 
to lines are called collineations. It is fundamental to projective geometry that 
collineations leave, in general, three points (real and imaginary) invariant 
(fixed). If the fixed points do not all lie on the same line, they define a 
triangle. Under a collineation any line in the pencil of lines centered at one 
of the fixed points is mapped to another line in the pencil. The points in 
which a pair of l ines through a fixed point intersects the line making up the 
opposite side of the triangle sets up a growth measure on that line. The 
boundary lines of the triangle are invariant in the sense that any point on 
one of them is transformed by the collineation to another point on the 
same line, or sometimes, to the same point. This invariant triangle is the 
setting for a remarkable set of curves, known as path curves. 

Given a set of fixed points A, B, and C and invariant lines a, b, and c 

as shown in Figure 2.14,  a collineation is completely determined by choosing 
an arbitrary point M within the triangle and its transform M' under the 
collineation. This is obvious, since the projected points P, Q on line a and 
P'Q' on line c determine growth measures on those lines projected from 
auxiliary points 0, 0' of Figure 2 . 14 as described in Section 2.5. Therefore, 
the next point of the trajectory determined by the collineation is the point 
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Figure 2.14 Construction of a path curve. 

in Figure 2 . 14  at the junction of lines AR and CR' where R and R' are the 
next points of the growth measures set on their respective lines. Thus the 
action of the collineation upon the initial point M sets up a trajectory of 
points, and these points lie on a set of invariant curves, known as path 
curves. As you can see, the path curves cut across the diagonals of the grid 
of quadrilaterals determined by the growth measure, i.e., the diagonal between 
M and M'. The path curves are invariant since any point that lies on such 
a curve is transformed to another point on the same curve. In general, any 
other pair of points not on the same path curve generates, by the same 
construction, another family of path curves. In fact, all path curves keeping 
the same triangle invariant form a group that mathematicians refer to as a 
Lie group. It can also be shown in [Clop] that all families of path curves of 
the plane can be described in homogeneous coordinates (see Appendix 2 .A) 
as the solutions to three dimensional linear differential equations with 
constant coefficients. 

One family of path curves is shown in Figure 2 . 15 .  All path curves have 
in common with this figure the fact that they pass through two of the fixed 
points, but not the third, and lie tangent to two of the invariant lines, but 
not the third. Edwards has this to say about path curves: 
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Figure 2.15 A typical family of path curves. 

"We have a plane in which everything is moving. What can 
live, can hold itself intact within the flux? It is the whole set 
of path curves, and nothing else! Quantitatively we have a 
similar situation in any living organism; the substance of which 
it is made was not in it yesterday, and will not be in it tomorrow; 
as far as its matter is concerned it is in a state of continual flux; 
the substance flows in and flows out; if the organism was simply 
its substance we would not be able to recognize it from one day 
to another. Yet its being and largely its form are invariant from 
one moment to another and from one day to another. The 
form can live within the flux." 

A family of path curves can also be determined by specifying multipliers, 
given by Equation (2.3 ) of the growth measures on any two invariant lines, 
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Figure 2.16 Orientations of the growth measures a, {3, y of a family of path curves. Growth 
measures a and y are counterclockwise while f3 = 1/ ay is clockwise. By permission of Floris 
Books. 

cross-ratio in the case of finitely situated fixed points, or geometric ratios 
in the case of a fixed point at infinity. For example, take a on line a and 
r on line c, along with the directions of the trajectories on these lines, say 
counterclockwise. The growth measure f3 on the remaining line b is the 
product or composition of the growth measures on lines a and c, and has 
the effect of inducing a growth measure in the opposite sense (clockwise) 
with multiplier equal to the product of the two, i.e., ay. Since reversing the 
sense of a growth measure results in inverting its multiplier, then f3 = 1/ay 
and a, {3, and y are related by, 

af3y = 1 ,  (2.4) 

when growth measures a and y have the same sense (counterclockwise) as 
shown in Figure 2.16.  

The equations of path curves have a surprisingly simple form. If we 
work in homogeneous coordinates, then the equation of the family of path 
curves is given by: 



44 Beyond Measure 

xa/{ = k ,  where a +  b + c = 0 

and a, b, and c are the logarithms of multipliers a, [3, and y and each value 
of k pertains to a different path curve of the family (homogeneous coordinates 
are described in Appendix 2.A). The fact that this equation is what 
mathematicians call homogeneous means that the shape of the curves depends 
not on the values of a and y but on their exponential ratio A defined as, 

A = log a
. 

log y 

Thus if a = 1 6  and y = 4 the curves would have the same shape as if a = 
9 and r= 3 ,  only the step size of the trajectory along the curves corresponding 
to the smaller values would be smaller. Three special cases of path curves 
are of interest: 

. 

Case 1 .  Two multipliers are identical, but in opposite senses, say f3 = 1/ay. 
In this case the path curves (not shown) look much like the ones in 

Figure 2.17 Path curves take the form of melons when one of the fixed points is transformed 

to infinity. 
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Figure 2.1 5  except that they are conics. But since, according to Equation 
(2.4), f3 = 1 (the points on AC are motionless) ,  the pencil of lines centered 
on B must be the other family of path curves. Together, the two families 
form a grid of path curves. 

Case 2. In Figure 2. 1 7 , point B is mapped to a point at infinity, while 
multipliers are taken on lines a and c in directions going counterclockwise 
from B to C and A to B. Notice that the path curves turn out to be 
egg-shaped, sharper at one end and blunter at the other. Much of Edwards' 

Figure 2.18 Path curves take the form of logarithmic spirals when two of the fixed points are 
transformed to I and ] on the circle at infinity. 
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recent work has involved applying Case 2 to an analysis of bud forms. 
In the process he has discovered subtle changes in bud shape over fourteen 
day periods that are synchronized with lunar cycles [Edw3]. 

Case 3. Points A and B are mapped in Figure 2. 1 8  to the points I and ] on 
the infinite circle, while C remains fixed at a real point. In this case, the 
line of the invariant triangle connecting C to a point at infinity is real, 
while the other two lines of the triangle are imaginary. If the growth measures 
on these imaginary lines are identical, then the path curves are conics and 
the lines are as in Case 1 ,  only now the conics are concentric circles and 
the lines radiate from C. Also, the multiplier of the circling measures set 
up on the circles result in points on the infinite circle { line) at equally 
spaced angles, while the growth measure on the real lines form a geometric 
series (see Section 2.5) .  The path curves are the equiangular { logarithmic) 
spirals that cut across the diagonals of the curvy quadrilateral formed by the 
path curves {lines and circles). 

2.9 Path Curves in Three Dimensions 

In three dimensions, collineations leave four points {real or imaginary) 
invariant. In general, these four points define a tetrahedron (a triangular 
pyramid with four faces and six edges). With the exception of these four 
points, all points of the space are in motion under iterations of the 
collineation. 

Once again, by specifying the location of an arbitrary point within the 
tetrahedron and its transform, the entire transformation is fixed. The 
trajectory of this arbitrary point traces out a path curve through space. Most 
of the surfaces of path curves of interest to Edwards' studies of organic forms 
arise from tetrahedra, two of whose fixed points are the imaginary circling 
points I and ] while the other two fixed points X and Y are finite and real 
(the semi-infinite tetrahedron). It is very difficult to visualize this surface. 
It is made up of two real planes at infinity (the equivalent in three dimensions 
of lines at infinity in two dimensions) and two imaginary planes (planes 
existing in the space of imaginary numbers) ,  and two real lines, one joining 
X to Y, and the other one being the line at infinity which carries points I 
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Figure 2.19 Spiral path curves on an egg-like surface. By permission of Floris Books. 

and]. The path curves on the two real planes contain a family of equiangular 
spirals such as the ones shown in Figure 2.18 .  More details are given in 
Edwards' books. 

Edwards' fundamental surfaces are egg-shaped forms, shown projected 
onto a plane in Figure 2 . 19, created by choosing a pair of congruent spirals 
on each of these real planes with spirals that lead out of Y and into X. The 
path curves on these surfaces are spirals of the type shown in Figure 2 . 18. 
Edwards then characterizes the shape of these surfaces by a parameter much 
like A but suitable for three dimensions, not mentioned here. 

2.10 Field of Form 

According to Edwards: 

"When our attention is drawn to the various path curve surfaces 
previously described, and especially the egg-like forms which 
occur with the semi-imaginary tetrahedron, we immediately 
become aware that forms very similar to these are to be found 
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Inflorescence: Flowering currant 

Leaf bud: Elm Flower bud: Buttercup 

Figure 2.20 Four ways in which path curves are to be seen in the plant kingdom. 

in at least four situations in the plant world (illustrated in 
Figure 2.20): 

a) the numerous famil ies of pine cones and related seed 
formations; 

b) tightly packed bunches of flower buds (e.g., rhododendron 
and flowering currant) in which the separate buds are nearly 
always arranged in spiral formations; 

c) leaf buds of deciduous trees {oak, beech, elm, etc. ) in which 
the little leaflets are themselves set in spirals; 
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d) the large domain of flower bud where in a large proportion 
of cases the petal edges climb spiralwise around the 
egg-shaped form of the bud itself." 

Edwards then sets out to meticulously measure, using statistical methods, 
the outer shapes for many such plants, and he has been able to make a 
convincing argument for their being path curves. A typical path curve 
within the tetrahedron takes the form of a spiral on the surface of an 
egg-shaped form. When two of the points of the tetrahedron are mapped to 
points at infinity, the path curves take on forms remarkably like the shape 
of plants, buds, and other organic forms. He has also applied his methods 
to studying the shape of eggs of different species of animals, the shells of sea 
animals, the shape of the hearts of animals, and the living human heart as 
seen through an angiogram. All of these have corroborated his ideas about 
the relation of path curves to living forms. 

Edwards reports on an odd form that, until recently, resisted all of his 
techniques of analysis, namely, the seed chamber buried within the depths 
of the rose form with yet another fundamental idea of projective geometry 
[AdamG]. He projected one of the remaining finite fixed points of the 
semi-imaginary tetrahedron to infinity and applied a transformation which 
he calls a pivot transformation in which the original transformation that 
generated the rose bud, forms the basis of a new transformation between 
elements from the dual spaces of planes (positive space) to elements of 
the space of points (negative space) .  In this transformation, shown in 
Figure 2.2 1 ,  the plane at infinity, the absolute "point" of the positive space, 
representing the "cosmic realm" is related to the pole at the remaining 
finite point Y, the absolute point of the negative space, which represents 
the "seed". The points on the infinite plane are dual to a cone of planes 
centered at the absolute point. 

The shape of the family of path curves of this transformation resembles 
a "watery vortex", and this family was so named by Edwards. These path 
curves have proven very good in describing the shape of the ovaries of 
plants. Much to his amazement, using an apparatus for measurement designed 
by a colleague, Edwards discovered that this form fits exactly to the shape 
of actual watery vortices. 



50 Beyond Measure 

Figure 2.21 The form of the rose led to the concept that the bud would mediate between a 
planewise vortex and the form of the rose hip. 

2.1 1 Comparison of Three Systems 

Three systems of thought have been presented in Chapters 1 and 2: Guidoni's 
analysis of some primitive myths and rituals, Schwenk's observations of the 
living forces within water, and Edwards' field of form. Although these 
systems are quite different in their representations of the natural world, 
they also have much in common. 

The most striking similarity between them is their dynamic vision of 
nature. For example, the act of conception is presented in the Bamba ritual 
of the Australian aborigines (Section 1 .2 )  as a movement toward a sacred 
center. All creation in the Fali myth (Seeton 1 .3 )  is represented as a series 
of vibrations. Schwenk represents the genesis of form in terms of movements 
of waves, vortices, and meanders. The particles of water continuously change 
but the outward form is stable. The same holds for Edwards' path curves, 
which can be viewed as the trajectories of a moving series of points. 

The three systems agree with each other concerning the role that 
astronomical influences have on earthly events. The sacred pole of the 
Achilpa serves as a direct link to transmit some form of life energy from 
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heaven to earth to nourish the tribe. The vortex, by opening up sensitive 
membranes of water to external influences, plays the same role in Schwenk's 
system. These influences are sucked toward the vortex center by negative 
pressure (Section 1 .9) . Edwards' watery vortex transformation places a plane 
at infinity to absorb distant influences that pass along spirals to a fixed 
center at the base of the plant's ovaries. 

Each system is built on the notion of sacred centers with no fixed 
location within an otherwise undifferentiated chaos. Wherever the chief of 
the Achilpa placed the sacred pole, that is where the center lies. Each 
watery vortex functions as a closed system and carries the center of its 
own "universe", complete with its built-in direction to the "fixed stars". 
Edwards also sees every plant as being a closed system with its center 
located at the base of the ovaries. 

The logarithmic (equiangular) spiral plays a key role within each of 
these systems. In the Bamba ceremony, the dancers crawl toward the sacred 
center along logarithmic spirals. Each of the fundamental patterns of water 
manifest in the natural world in spiral formations. The fundamental patterns 
of water manifest in the natural world in spiral formations. The fundamental 
surfaces from which Edwards develops organic forms are derived from 
logarithmic spirals. Even meandering streams can be looked at as helices 
that have been flattened onto a planar surface. 

The mythic beginnings of the Fali people go back to two cosmic eggs. 
Schwenk feels that the forces of water are instrumental in the development 
of the embryo from the egg. Edwards' path curves always generate 
egg-shaped forms with spiral striations. 

In Fali myth, all creation comes about through alternate and opposing 
movements. These alternate and opposing movements are evident in the 
oppositely directed spirals of vortex trains, and are also incorporated in the 
spongy structures of joint formations of humans and animals. Involutions 
that characterize the group of growth measures can be viewed as alternating 
and opposing movements or vibrations, and these growth measures are the 
key to deriving Edwards' field of form. 

Finally, every element of Fali society either partakes in a positively or 
negatively directed motion or is a fixed center. As we saw, the "feminine" 
cylindrical walls of their huts are positively directed while the "masculine" 
conical roofs are negatively directed with respect to the fixed center at the 
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vertex of the cone. Is it far-fetched to imagine a connection between this 
image and Edwards' pivot transformation? Here, the infinite plane and the 
center of this transformation are conceived of as positive and negative dual 
spaces. Points of the positive space are transformed to planes of the negative 
space that envelope a cone about the center. 

2.12 Conclusion 

We have shown that spiral forms are ubiquitous in the natural world. 
Primitive people, understood the importance of the spiral as an expression 
of nature. Projective geometry and the mathematics of the spiral may help 
to bridge the enormous chasm between ancient systems of thought and the 
modem world of science. There are also benefits to be gained for science 
by bridging this gap. 

Appendix 2.A. Homogeneous Coordinates 

The points of a projective transformation can be described by a system of 
homogenous coordinates. First consider the points on a line. Each point on 
the line is represented by a pair of homogeneous coordinates, (kx, k) for any 
value of k -:f. 0. Thus, a point on the line has many different representations. 
For example, the point one unit to the right of the origin can be represented 
by, (k, k) or ( 1 ,  1 ) , (2 ,  2) , (3 ,  3 ) ,  . . .  , for k =  1 ,  2, 3, . . .  , etc. The point 2 units 
to the right of the origin is: (2k, k) or (2 ,  1 ) , (4, 2 ) ,  (6, 2 ) ,  . . .  for k = 1 ,  2, 
3 ,  . . .  , etc. The origin of the coordinate system is also represented by (0, k). 

Notice that the usual cartesian coordinate of the line is the x-coordinate 
of the homogeneous coordinates when k is set equal to 1 ,  e.g., x = 1 
corresponds to homogenous coordinate ( 1 ,  1 )  while x = 2 corresponds to 
(2, 1 ) ,  and the origin x = 0 is (0, 1 ) .  The value of this system is that it 
enables the point at infinity to be represented by finite coordinates. The 
point at infinity is represented in homogeneous coordinates as (q, 0) for q 
finite. This makes sense since, as k approaches 0 in (kx, k), kx remains finite 
only if x approaches infinity. Thus, with all generality the point at infinity 
can be represented by ( 1 ,  0) ,  with q set equal to 1 .  The geometry of this 
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system will be described in Section 4.2 in connection with a representation 
of the tones of the musical scale. 

In terms of homogeneous coordinates, a co-basal transformation between 
fixed points X and Y, as shown in Figure 2.9, can be represented on the unit 
interval, in homogeneous coordinates where X represents the origin (0, 1 )  
and Y represents the point at infinity, ( 1 ,  0) .  

In a similar manner, the points of the plane can be represented in 
homogeneous coordinates by (kx, ky, k) for k 7:. 0. The line at infinity consists 
of all points of the form: (p, q, 0). 



3 
Harmonic Law 

3. 1 Introduction 

Music is the hidden arithmetical exercise of a 
soul unconscious that it is calculating. 

Gottfried W. Liebniz 

In this chapter and the next two I will present some of the materials that 
make up the study of what may be termed "speculative music". There have 
been many attempts to trace the significance of the musical scale in ancient 
cultures as a tool for understanding astronomical and cosmological 
phenomena [Boe]. Scientists such as Kepler and Newton, in their search for 
the musical harmonies in the natural world, felt themselves part of a chain 
which stretched back through the logic of Ptolemy, Plato, and Pythagoras 
to the mythology of Apollo, Hermes, and Orpheus. 

The musicologist Ernest McClain has gathered a great deal of suggestive 
material connecting musical tuning systems with the numerology in such 
ancient books as the Rig Veda, the Dialogues of Plato, and the Holy Bible. 
McClain believes that quantifying the location of musical tones in the 
cyclic octave presented early cultures with problems similar to those faced 
in defining solar and lunar cycles. Rational numbers, the only kind then 
available, proved inadequate. This fostered an art of approximating irrationals 
by a slight excess or deficiency, a task demanding strict discipline and a 
comfortable literacy. A spiritual "warfare" thus developed within the number 
theory required for cosmology, and its metaphors were absorbed into the 
sacred scriptures of surviving cultures. McClain believes that ancient 

54 
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mythology is thus inspired harmonica! allegory, descending from an early 
professional scribal virtuosity in algebra. 

Drawing on the direct epigraphical evidence of Egyptian arithmetic, 
Babylonian astronomy, Assyrian lyre tunings, Platonic musicology, references 
to number in the Bible, Ptolemaic science, and later Alexandrian philosophy, 
McClain imaginatively reconstructs a plausible musical correlation. 
His methods must be evaluated by their self-consistency in shedding 
new light on otherwise obscure passages in ancient literature. In the first 
part of this chapter I present McClain's archaic reconstructions, and then 
follow with a modem explanation. To avoid assuming any musical knowledge 
on the part of the reader, I will explain certain necessary musical 
fundamentals. 

My personal interest in McClain's recreation of ancient harmonic law 
are two-fold: 

1 )  his portrayal of a tension between the incompleteness of the number 
system when restricted to rational numbers and the continuum of 
geometry; 

2 )  the importance of the ratio of small whole numbers in the representation 
of tones from the musical scale. 

Part two of this book is devoted to showing that these are still issues of 
importance in modern mathematics, only now in the context of dynamical 
systems. 

3.2 Musical Roots of Ancient Sumeria 

The Sumerian culture of Mesopotamia during the fourth millennium B.C. 
was far more advanced than its neighbors. Many aspects of this culture were 
incorporated into the societies that followed, such as those of the Babylonians 
and the early Hebrews. There is evidence from testimonials of Greek 
historians such as lamblichus and Diogenes Laertius [Far) that much of 
Greek knowledge and wisdom came from this part of the world, and that 
this ancient knowledge may have been transmitted to Pythagoras. We know 
l ittle about the details of Sumerian civilization. However, from the 
great storehouses of musical instruments found at Sumerian burial sites, we 
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know that this was an aural culture in which music played a significant 
role [Far]. 

McClain points to a great advance in mathematical thinking in ancient 
Mesopotamia, based on the relationships inherent in the musical scale. 
Certainly, man had conceived of numbers long before recorded history. 
Early man used numbers to count objects of importance, such as animals or 
arrowheads. But this is not real mathematics. It was a great revelation when 
the first man realized that the sensation of sound was based on the ratio of 
string lengths and not on their absolute lengths. For example pluck a string 
and then shorten the string by t and pluck it again; you experience an 
octave increase of the original pitch. The same sensation of an octave 
occurs independent of the fundamental tone giving alternate aural images 
of the same reality. Although there is no clear record of these events, 
McClain believes that this discovery may have taken place in Mesopotamia 
between 3 and 4 millennia B.C. [McC4]. 

Harmonic law may have been the first organized system in which rational 
numbers played a major role. In fact the ratio of small whole numbers 
organized in a cyclic pattern is the key to understanding the musical scale. 
Divorcing number from pure magnitude and centering it on showing the 
relation between things { in this case musical intervals) was a big step in the 
direction of abstract mathematical thinking. By early in the third millennium 
the Sumerians had achieved considerable musical development and may 
have created a sophisticated musical theory to accommodate these 
developments, although there is only circumstantial evidence to support 
this view. 

The theory of the musical scale may have been one of several factors 
that led the Sumerians, sometime in the third millennium, to create the 
sexagesimal (base 60) system, and with this, the ability to do mental 
arithmetic of a high order. The sexagesimal system represents numbers in 
terms of powers of 60 much like the decimal system uses powers of 1 0  
[Barr]. The musical matrix that I shall describe in Sections 3 .3-3.5, based 
on the sexagesimal system, may have been the equivalent of the first digital 
computer in its abil ity to facil itate rapid calculations. Whereas the 
origin of this base 60 system is unknown, it was known to the Sumerians 
[McC4]. At the same time, there is some evidence that the musical scale 
was used as metaphor in mythology and sacred scriptures. The pantheon of 
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Sumerian gods were assigned numbers relating to the musical scale [Hoo] , 
[McC4] . 

Around 2 100 B.C. the Babylonians developed a particular virtuosity 
for computation and began to apply it to astronomy. The ideas were 
somewhat transformed and diffused into the numerology of the Hebrew 
Bible (cf. [McC5 ,6], [McC-S] ). The musical scale is based on ratios of the 
first six integers, 1 :2 :3:4:5:6. McClain feels that this may be related to the 
Biblical six days of creation, with the number 7 reserved for the realm of 
the sacred or God. Pythagoras brought these ideas to Greece from his 
travels to the East. They became part of the basic education of every Greek 
youth. Recent research of Anne Bulckens [Bul] shows that many of the 
measurements within the Parthenon can be expressed as integers related 
to the musical system of Pythagoras. Even as late as 150 A.D. , Ptolemy 
was still using the base-60 system to do his very accurate astronomical 
calculations. Indeed our system of angle and time measurement in degrees, 
minutes, and seconds reflects this ancient system. 

These themes will be explored later in this chapter. The musical scale 
will be shown to be based on a symmetry of opposites, a rising and falling 
scale. The tension between opposites has been also illustrated by such star 
hexagon symbols as the Hindu Sri Yantra and the Star of David shown in 
Figure 3 . 1 ,  and in Schwenk's and Edwards' theories, described in the previous 
two chapters, in which plants are both rooted to the earth and open to the 
heavens. It is McClain's theory that these star hexagons lie behind the 
structure of the musical scale. 

3.3 Musical Fundamentals 

Sound manifests itself in the form of vibrations of air. Vibrations of high 
frequency give rise to high-pitched sounds while low frequencies are perceived 
as low tones. Our perception of sound is very much bound up with the 
anatomy of the ear. Any pair of tones whose frequencies are in the ratio 2 : 1  
are perceived as being of the same pitch class although at differing pitches. 
Such tones are said to differ by an octave. This latter term (eight) reflects 
the now almost universal acceptance of an ancient Middle Eastern preference 
for cyclic heptatonic (seven-tone) structures which repeat on every eighth 
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(a) 

(b) 

Figure 3.1 The tension of opposites illustrated by the (a) Hindu Sri Yantra diagram; (b) the 
star of David. 
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Figure 3.2 The 1 2-tone spiral with sample vibration rates at four quarters. 

tone ( i.e. , like our names for the seven days of the week) . The present 
musical scale known as the equal-tempered scale, involves placing twelve 
evenly spaced tones into the space of one octave, where what we mean by 
evenly spaced will be made clear. The letters A through G are used to 
represent tones along with sharps and flats, called accidentals. 

If the 1 2  tones of the equal-tempered scale are placed on a polar coordinate 
graph at equal angles, and the ratio of frequencies is represented by the 
radial distance to the origin of the coordinate system, the equal-tempered 
scale lies on a logarithmic spiral (see Section 2.5 and Figure 2 . 1 1 )  as shown 
in Figure 3.2. Appendix 3 .A gives a brief introduction to logarithmic spirals 
and logarithms, and its relationship to the equal-tempered scale. Higher 
octaves spiral outwards while lower octaves spiral inwardly, with the radial 
distance of the fundamental note represented by the sequence: 

1 1 1 
. . .  , 2-3 , 2-2 , 2-1 , 1, 2, 22 , 23 , . . .  or . . .  , -, -, -, 1, 2, 4, 8, . . .  

8 4 2 
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This hypothetical "tonal zodiac" shows how a twelve-spoked mal)dala harmonize� 

music and astronomy at an abstract·geometrical level. In ancient times neither It•" 
constellations nor the intervals of the chromatic scale divided the cycle equally. 
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Figure 3.3 The equal tempered rising and falling scale depicted as a mandala of the single­
wheeled chariot of the sun. This hypothetical "tonal zodiac" shows how a 1 2-spoked mandala 
harmonizes music and astronomy at an abstract geometrical level. 

Because doubling and halving is an octave relationship, a twelve-tone cyclic 
group is generated by the 1 2th root of 2, that is by the ratio of 1 .059 . . .  , very 
close to 6%. The radial distance of the spiral grows about 6% per tone, and 
like compound interest, the frequency (principal) doubles after 1 2  tones 
(years) .  

I f  we are indifferent to the physics of sound and concerned only with 
tonal function, as musicians normally are, then the spiral can be collapsed 
into a tone circle as shown in Figure 3.3. The twelve signs of the zodiac 
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have been placed on the circle. This hypothetical tonal zodiac shows how 
a twelve-spoked mandala harmonizes music and astronomy at an abstract 
geometrical level although in ancient times neither the constellations nor 
the intervals of the chromatic scale divided the cycle equally. The ratio of 
frequencies between any tone and the central tone D are indicated on the 
circumference. (Note that in comparing the tones of Figures 3 .2 and 3.3 the 
following tone pairs are equivalent to each other: A sharp = B flat, C sharp 
= D flat, D sharp = E flat, F sharp = G flat, G sharp = A flat). On either 
circle or spiral, the scale can be thought of as rising in pitch by reading the 
circle or spiral in a clockwise direction or decreasing in pitch by reading it 
counterclockwise. 

Each division is called a semitone and the distance between tones, 
measured in semitones (s) ,  is referred to as an interval. Some common 
intervals and their semitone values are listed in Table 3 . 1  assuming D as the 
fundamental tone. 

Note that in Figure 3 .3 the octave from D to D' can be subdivided into 
a perfect 4th from D-G (four tones from D to G: D, E, F, G)  and a perfect 
5th from G-D (five tones from G to D). Such pairs of intervals are called 
complementary. Similarly, the major 3rd and minor 6th, and the minor 3rd 
and major 6th are also complementary. 

From the viewpoint of the 1 2-tone theorist, any diameter through 
opposing points in Figure 3 .3 locates the square root of 2 which defines the 

Table 3.1  Tonal intervals. 

semi tone D-D sharp 1 s  
wholetone D-E 2 
minor 3 rd D-F 3 
major 3 rd D-F sharp 4 
perfect 4 th D-G 5 
tritone D-G sharp 6 
perfect 5 th D-A 7 
minor 6 th D-B flat 8 
major 6 th D-B 9 
minor 7 th D-C 1 0  

major 7 th D-C sharp 1 1  

octave D-D' 1 2  
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Figure 3.4 Cyclic subgroups represented on 1 2-pointed stars; (a) four-cycle (major thirds); 

(b) a two-cycle (whole tones); (c) five-cycle (fifths). 

musical tritone for its own pair of tones. The twelve pointed stars of 
Figure 3.4 illustrate cyclic subgroups of the 1 2  tone scale. In Figure 3 .4a, 
every fourth point is connected (the star { 12, 4}). The sides of any triangle 
in this figure define major thirds. If every second vertex is connected, as 
shown in Figure 3.4b ( the star { 12 ,  2}) , the sides of any hexagon define a 
wholerone scale while the sides of any square of star { 12 ,  3} define minor 
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thirds shown in Figure 3.4c. These exhaust the cyclic subgroups within a 
model octave, but the gamut, of piano, organ, and orchestra (eight to nine 
octaves) creates a "space" for cyclic subsets of even larger intervals. 

Notice that star { 12, 5} in Figure 3.4d does not disconnect into cyclic 
subsets but results in a connected star ( the mathematical consequence of 1 2  
and 5 having no common factors) .  This so-called circle of fifths will be 
exploited in the next section to determine the relative frequencies of the 
1 2-tone scale in the manner of modern piano tuners. However, we shall see 
that this tuning tradition goes back beyond recorded history. 

3.4 Spiral Fifths 

In the ancient world, with its restriction to rational numbers, harmonic 
theory was essentially the study of numerical coincidences in approximating 
the idealized structures described above. The relationship between pitch 
and the length of a plucked or bowed string was probably the first instance 
of a relationship that required the concept of rational numbers. When 
other factors are held constant, the doubling or halving of string length 
produces, respectively, a lower or higher octave respectively. This is illustrated 
on a single string lying above a resonating chamber called a monochord, as 
shown in Figure 3 .5 (a). Here, a string is stretched between two fixed bridges 
at the ends of the string. The length of the vibrating portion of the string 
is controlled by a movable bridge. If the movable bridge is set at an arbitrary 
position, shown in Figure 3 .5 (b ) ,  and the string is plucked it gives off a 
resonant tone called the fundamental or tonic. If the movable bridge is moved 
to the location f (see Figure 3.5b), the resulting tone is the fundamental 
raised one octave. Any octave is suitable for a theoretical model ( i.e., the 
string length is arbitrary) .  

Pitch names are merely local conventions. Arithmetical reciprocals 
produce the same intervals, but in opposite directions. In other words, if the 
bridge is moved to the location 2 thus lengthening the string, the plucked 
tone is the fundamental lowered one octave. In this way any ratio, x:y 
or y:x, can be represented by a monochord bridge position. Thus tuning 
theory concerns a two-dimensional realm (measured by x,y-coordinates 
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Figure 3.5 (a) A monochord; (b) schematic diagram of a monochord showing the positions of 
the octave, fourth, and fifth, and their reciprocals. 

[see Section 4.2] )  of perfect inverse symmetry whose matrix or "Great 
Mother" is the ratio 2 : 1 . For this reason all even numbers are similarly 
considered by ancient cultures to be "female". Harmonic theory also shows 
us that the ratio of pitch frequency of an interval is inversely related to the 
string ratio. The most remarkable of all coincidences is that intervals within 
the octave 1 :2 which musicians prefer to tune by ear - namely, perfect 
fifths have a ratio 2:3 while complementary perfect fourths correspond to 
the ratio 3:4 (they neatly divide the octave double into 2:3 and 3:4) - are 
worth almost precisely seven semi tones and five semi tones respectively (the 
ratio of frequencies of the fourth and fifth, or the wholetone, is only slightly 
more than its counterpart in the equal-tempered scale). Notice that according 
to the definition of the logarithmic spiral in the last section, whereas intervals 
add, the ratio of frequencies (or string lengths) multiply, e.g., f X � = ± 
(an octave)  while Ss  + 7s = 1 2s , and f :  � = � whi le  7s - S s  = 2s 
(a wholetone) .  

An up and down succession of these intervals in preferred tuning order 
is easily contrived to closely simulate 1 2-tone tuning. This musician's spiral, 
with tones descending a fourth and ascending a fifth is illustrated in 
Figure 3.6. There is a very slight cyclic excess in the tuning ratios by 
comparison with the equal-tempered scale, unnoticeable until it accumulates 
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Figure 3.6 Serpent power: the spiral tuning of fourths and fifths. Courtesy of Ernest McClain. 

through several pitch classes. This excess is just sufficient to make the 
distinction between the first tone (A-flat) and the 13th tone (G-sharp) 
noticeable under laboratory conditions. Thus the natural tuning process 
proves intrinsically cyclic if it is continued this far! (Five to seven pitch 
classes were the usual ancient norm, East and West. ) The barely perceptible 
overlap between the 1 st and 13th tones is known as the Pythagorean comma. 
Its value is computed in Appendix J.A. Notice that alternate tones in this 
sequence belong to wholetone progressions easily mapped (and with adequate 
accuracy) by a hexagon (see Figure 3.4b) ,  so that an ancient scientist 
possessed tools as convenient as our own for explaining tuning theory via 
visual geometrical aids. The cumulative cyclic excess encourages us to view 
this system from its center, taking pitch-class D (center of symmetry in 
our modern naming system) as representing an all-purpose "Deity" (and 
immutable reference center), embracing the universe with his two "arms". 
There is a gradually increasing internal dissonance as we move outward from 
the center into a world considered as "emanating" from "Him". Thus the 
ancient Pythagorean dedication to the symmetry of opposites was required by 
the model it used, and it continues to encourage us to view the tone system 
from its middle; we introduce sharp and flat symbols only as needed (raising 
and lowering pitch class by a semitone) ,  and use them as sparingly as 
possible. Pentatonic and heptatonic scale systems suffered no problem with 
this concept of tuning for as long as musical styles remained essentially 
melodic and the word "symphony" implied, as it did in Greece and many 
Eastern ensembles, playing and singing in parallel octaves. Twelve-tone music 
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Figure 3. 7 Sumerian double-serpent symmetry; from the steatite vase of Gudea in the Louvre, 
Paris. 

requiring all pitches to be pre-tuned appears only much later in history with 
the advent of polyphonic music; ancient examples pertain only to theory. 

McClain suggests that this musical spiral may be the basis of ancient 
dragon and serpent myths such as the one shown in Figure 3.7. Tuning 
theory begins with the arithmetization of this serpentine tuning progression. 
And it proves astonishingly simple. Some ancient maker of harps or panpipes, 
McClain assumes, must have noticed that successive lengths needed for this 
sequence vary about one-third, and so a rule was born: 

"Add or subtract one-third" 

( i.e. , from successive string or pipe lengths) .  Pitch-class remains indifferent 
to this addition and subtraction because t and 1 are octave equivalent, i.e. , 1 X t = t .  It is never necessary for a workman to know that the rule is 
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perfectly accurate only on an idealized monochord, and only approximately 
accurate for pipes of particular diameters, because ancient pipes and strings 
themselves were never perfectly uniform; final tuning always was, and 
still is, done by final adjustment of individual string tension (of pipe and 
tone-hole diameters, and breath control}. Thus an approximate ancient 
craftsman's rule eventually would have been sufficient to give birth to a 
theory in somebody's mind. Judging from the contents of ancient ritual 
burials, pipes and strings were sufficiently abundant in the ancient Near 
East by the beginning of the third millennium B.C. to suggest such 
knowledge. Chinese ritual flutes appear at least 2000 years earlier, and a 
seven-holed flute was recently found in the Yellow River valley in Henan 
Province in central China dating to around 7000 B.C. in a condition playable 
today [Fou]. Therefore, the invention of tuning theory cannot be localized 
either in time or space, and may never have been thought of as an invention 
at all. Man simply awoke to an observation, a truth evident in the tuning 
of any harp. 

The oldest expression of the "plus or minus one-third" rule is attributed 
to Kuan Tzu ( 7th century B.C.) [Nak] , who explains how to apply it 
arithmetically and geometrically to the standard pentatonic scale. Since 
four new values (of relative string length) are to be computed from the 
reference value, he tells us to first "take three four times" (meaning 
3 X 3 X 3 X 3 = 34 = 8 1 )  to compute four successive values from 8 1  through 
108, 72 ,  96, to 64 (= 26) ,  where factors of 3 are exhausted. For example, 

1 1 
8 1 + -x 8 1 = 1 08, 1 08--x 108= 72, etc. 

3 3 

Taking C as the reference value results in the tone series, 

C G D A E 
81  108 72 96 64 

(3. 1 ) 

which can be increased or decreased by powers of 2 and reordered into any 
one of five descending pentatonic scales, e.g. , 

G E D C A 
54 64 72 8 1  96 

each tonally equivalent to the succession of black keys on the piano. 
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Analogously, a heptatonic calculation begins on 36 = 729 and ends on 
29 = 5 1 2  producing the Pythagorean scale. To arithmetize the entire spiral 
of thirteen tones, merely start with a reference value of 3

1 2 = 531 ,441 and 
zigzag appropriately to end on 219 = 524,288 ( the Pythagorean comma is 
related to the difference (or ratio) between these values, as is shown in 
Appendix 3.A). 

Notice that this process always begins with the largest "male", yang odd 
number (a power of 3 )  and ends with the largest "female", yin even number 
(a power of 2 ) ,  e.g., 81  and 64. Thus the prime numbers 2 and 3 ,  female 
and male respectively, inspire Chinese "five element" theory and yin-yang 
dualism, and are projected from Chinese musicology onto Chinese culture 
as a whole. These notions are indigenous also in Western theory under 
analogous rubrics such as the pentatonic structure of folk melodies, somewhat 
obscured however by the wider success of heptatonic thinking. Figure 3 .8a 
shows that multiples of either frequency or string length by powers of 3 
result in the seven-tone scale while Figure 3.8b illustrates that powers of 2 

1 :2 

Circle of the Same Circle of the Different 

(a) (b) 

Figure 3.8 From Plato's Timaeus, (a) the "circle of the same" showing generation of the 
heptatonic scale from powers of 3 ;  (b) the "circle of the different" showing octave identity 
between tones. 
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preserve the tone, merely altering the octave. McClain [McC2] sees these 
as the "circle of the Same" and the "circle of the Different", pertaining to 
the creation of the "World Soul" in Plato's Timaeus. The two systems 
reflect the fact that Chinese astronomy never counted the Sun and Moon 
as planets ("wanderers"), as Western astronomy did, requiring a heptatonic 
model (representing the seven wandering stars known to the ancients). In 
both East and West, for reasons we do not understand, heptatonic and 
pentatonic structures were both well-loved, enjoyed the same arithmetic, 
fueled the same cultural metaphors, and encouraged the same modal 
permutations. Any tone in a set of five or seven could be lowest, highest, 
or middle, and function as a modal identifier merely by doubling and/or 
halving its values appropriately, and so musical practice did not affect 
mathematical theory. 

All of these spirals can be tuned in reverse order by inverting the 
tuning rule, and working from right to left. The reformulation proves less 
elegant: 

"subtract one-fourth or add one half' 

( i.e., to reach � and -f ,  which are octave equivalents) ,  and thus exposes 
the superiority of the Chinese rule, which seems to have been forgotten in 
the West. 

3.5 Just Tuning 

We should expect that in the high civilizations of the ancient world, expert 
in handling fractions, arithmetized tunings suffering from an obvious cyclic 
excess would be paired with another tuning showing a compensating cyclic 
deficiency by comparison with the equal-tempered scale. It was in both 
Taoist China and ancient Greece that brilliant alternatives arose [Barb]. 
In the West we know this alternative tuning, with cyclic deficiencies, under 
the rubric of ]ust tuning. 

Ancient harmonicists loved its arithmetical parsimony. It permits all 
twelve tones to be defined with integers of no more than three digits. In 
the previous section, the pentatonic scale was easily defined in either tuning 
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with two-digit numbers, but remember that spiral-fifths tuning requires six 
digits for the complete 1 2-tone system. This is numerically grotesque because 
nobody can hear the difference of plus or minus one unit beyond the third 
digit, and few of us notice such a distinction even in the third digit. Thus 
human convenience, affection for arithmetical parsimony, and the ear's 
benign tolerance of very small differences combine to encourage attention 
to a just tuning whose smallest heptatonic pattern, we shall see, is placed 
within a 30:60 octave and whose 1 2  tones are placed in the 360:720 octave. 
The tones of the Just scale are arranged in a circle (see Figure 3.9) ,  with 
their corresponding ratio of frequencies relative to the fundamental, D. 

Notice that the semitones are not of equal length, as they would be in 
the equal-tempered scale, and that numerators and denominators of these 
fractions now have factors of prime 5 in addition to 2 and 3 of the "serpent" 
tuning. 

This Just tuning arises from a very slight contraction in the two ends 
of the "Great serpent" shown in Figure 3.6. If we merely drop a unit from 
our pentatonic base of 8 1 ,  we end up with the ratio 64:80 = 4:5, a pure third 
(C:e, or inversely, E:c rather than E:C). As a consequence of this contraction 
(by a syntonic comma of 80:81 ,  imperceptibly smaller than our previous 
comma), the tones: e-b-f sharp-e sharp-g sharp are each a comma lower in 
pitch; and the tones: a flat-e flat-b flat-f-c are each a comma higher in pitch. 
We have merely shrunk the "serpent" a bit at two symmetric loci, just 
sufficiently to create a gap between a-flat and g-sharp (whereas before we 
had an overlap). These alternate Just pitches are designated in lower case 
letters by McClain to call attention to this slight modification. 

The result is a fusion between perfect fifths and fourths with pure thirds 
at several loci. Figure 3 . 10  maps the resulting system through several stages 
of development. The original serpent is now distributed symmetrically in 
three successive rows, and more serpents are growing in adjacent rows. 
Although standard notation has been used for the tones in this matrix, the 
ones in rows 1 and 2 are excessively sharp while the ones in rows 6 and 7 
are excessively flat compared to the equal-tampered scale. We are watching 
the tones multiply with each effort to bring the process to a close. Ancient 
tunings generate infinite groups, not cyclic ones as does the equal-tempered 
scale. 
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Figure 3.9 The Just scale with tonal ratios. 

Figure 3.10 Thirty seven tones of the musical matrix generated by the ratios of the Just scale. 

Figure 3 . 10  can be arithmetized by thinking of it as a multiplication 
table for the numbers A and B as shown in Figure 3 . 1 la. This table is the 
origin of the sacred symbol of the Pythagoreans known as the tetractys and 
it is found in the writings of Nicomachus, the Pythagorean philosopher 
(2nd Century C.E. ) (cf. [KaplO], [D'Oo] , [McC2]) .  If A =  2 and B = 3, the 
powers of 2 and 3 give rise to the lambda figure found in Plato's Timaeus 
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A B 

AB 

The Tetractys: Basis of the Musical Matrix 

8 

4 

(a) 

2 3 
{6] 

{12] {18] 

9 

Plato's World Soul 

(b) 

27 

Figure 3 . 1 1  (a) The tetracrys: basis of the musical matrix; (b) Plato's "world soul" conforming 
to the format of (a). 

and known as the "World Soul" (see Figure 3 . 1 1b)  (cf. [McC2], [Kap3] ). If 
"one" is taken to be the frequency of the fundamental, then three successive 
multiples of 3 along the left leaning diagonal ( \ )  of Plato's lambda along 
with their reciprocals correspond to the tones of the heptatonic scale 
represented in Figure 3 .8a. The right leaning diagonal (/) of the lambda 
figure are powers of 2 which do not alter the pitch classes of a tone from 
one octave to another as shown in Figure 3 .8b. 

If A = 3 and B = 5, then a similar multiplication table for 3 and 5 arises 
shown in Figure 3 . 1 2a. Each number in the matrix is multiplied by successive 
powers of 3 going from left to right, and powers of 5 going up the right 
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(a) (b) 

- - - -

1 
Ct.$ 

(c) (d) 

Figure 3.12 Multiplication table for tones based on primes 3 and 5,  (a) smallest integers 3P x 

5q, (b) 4:3 mated with 5; (c) diatonic scale order; (d) tonal reciprocals. 

leaning diagonal. If the 1 in Figure 3 . 1 2a is raised two octaves to a 4, then 
Figure 3 . 1 2b is the end result of the following sequence of matrices. (Notice 
that the integers at the vertices of the triangles are powers of 3, 4, and 5 ) :  

5 

1 
--? 

3 4 

5 
--) 

3 
1 6  

20 

25 

1 5  

1 2  9 
64 

1 25 

100 

80 60/30 

48 

75 

45 

36 27 

Three ratios of a 3 :4:5-relationship at the basis of the Just scale present 
themselves: 4:3 or a musical fourth from right to left f- (e.g., 80:60), 5 :4, 
or a major third along the right-rising diagonal )'I (e.g., 75:60) ,  and 3:5, or 
a decrease in tone of a major 6th along the left-falling diagonal \, (e.g. 



7 4 Beyond Measure 

fa� l ing ( � l t ch b 
\ 

!lf : � # @l t 
...Q_ 

ii-f r II 
I r 

rat i os 3 0  3 Z  36  4 0  4 5 4 8  ( 5 0 ) 5 4 6 0  
r i sing I} e \:1  f G 1\. b l:l (b ) c D 
f a l l ing D c l i> A G fl ( f ) e D 

Figure 3.13 Poseidon and his five pairs of twin son's from Plato's Laws, representing all the 
tones from the seven tone rising and falling heptatonic scales. 

36:60) where the ratios represent frequencies rather than string lengths. All 
of the tones shown in Figure 3 . 1 2b satisfy these same relations. 

In Figure 3 . 1 2c, the numbers are multiplied or divided by powers of 
2 (which do not alter their pitch classes} until they lie within the octave 
limit of 30:60, and the triangle is truncated to a ziggurat shape, allowing 
entry only to those numbers within the 30:60 octave limit. Notice in 
Figures 3 . 1 0  and 3 . 1 2b that tones equidistant but oppositely directed 
from the central tone are complements, and are represented by inverse 
ratios. Therefore, Figure 3 . 1 2c defines the inverted diagram of Figure 3 . 1 2d 
corresponding to a falling scale. All tones within the intersection of the 
inverted ziggurats have inverses within the octave 30:60. In this way all of 
the ratios of the seven-tone rising scale and its symmetric falling scale are 
derived and shown in Figure 3 . 13  in terms of integer values. Also notice 
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6<W 480 ;: S40 405 
512 384 576 432 648 486 

c) Chromatic Order within 
720:360 Octave 
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Minor Thirds 

\ 
18 Tones 

in Just Tuning 

Figure 3.14 Multiplication table for 1 1  of the 1 2  tones of the Just scale. (a) Irreducible integers 
3p5q < 720; (b) chromatic order within the 720:360 octave; (c) inverted ziggurats showing 
tones invariant under inversion. 

that the three tones of the Pythagorean scale fundamental to the Western 
music, do fa sol do (e.g., D G A D') lie on the central axis. 

In a similar manner, the matrices can be extended to encompass 1 1  of 
the 1 2  tones of the 1 2-tone scale within the inverted ziggurats by merely 
enlarging it to one encompassing the octave from 360 and 720 as shown in 
Figure 3 . 14. The ratios of the 1 3  tones within the ziggurat reproduce the 
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b = 600 

D = 360 : 720 

G = 480 
-........ -�# 

-
&. = 486 

ab = 5 1 2  = 29 g - 500 
tvr 

f = 432 

Figure 3.15 Tonal symmetries in the "calendrical" octave of 360:720. Symmetries in base 
60-arithmetic naturally result in this smallest integer approximation to our equal-tempered 
1 2-tone scale whose equal divisions are marked by short radial lines on the rim of the 
circle. 

tones of the Just scale shown in Figure 3.9 along with the pairs e-E and 
c-C differing by the comma of ratio 80:81 .  Five tones of the Pythagorean 
tuning lie on the central axis, forming a pentatonic scale. The symmetry 
of the 1 3  tones of this so called yantra diagram (the same picture occurs 
by turning the page upside-down) results in the bilateral symmetry of 
Figure 3 . 15 .  The missing 1 2th tone is A flat or G sharp, the approximation 
to ..fi .  
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3.6 Music and Myth 

We see through these tonal matrices the genesis of a number system 
base 60 which originated in Sumer about 3000 B.C. along with a calendar 
based on a canonical 360-day year and 30-day month which were musically 
if not cosmologically correct. Key numbers from this sexagesimal system 
were associated with a pantheon of gods. About 2 100 B.C., the Babylonians 
became politically ascendant and reorganized the Sumerian pantheon, 
preserving the names of its gods, and keeping its mathematical terminology. 
They developed base-60 computation to a level of arithmetical virtuosity, 
as did the Egyptians. Between 500 B.C. and 1 50 A.D., Babylonian and 
Greek astronomy developed base-60 computation. The musical scale 
with its 1 2-tones became a model for the solar and lunar cycles. The 
incommensurability of solar and lunar cycles may have been associated 
with the need for a comma to close the tone cycle as is shown in 
Appendix 3.B. The yantra diagrams serve as a kind of cultural Rosetta 
Stone through which McClain has been able to show the common roots of 
many ancient mythologies with metaphorical imagery pertaining to the 
musical scale. I provide three examples. 

Example 3.6. 1 The Great Gods of the Babylonian Pantheon 

Figure 3 . 1 2c can be associated with the great gods of the Babylonian 
pantheon - Enki 40, Enlil 50, Sin 30 (the moon god) and Anu 60 [McC4]. 
Notice their positions in the diagram, with Enlil 50, the "Lord Atmosphere" 
at the peak and Anu, the head of pantheon, in the center setting up a 
3 ,  4, 5-relationship within the octave interval �g .  According to McClain, 

"Anu is essentially a do-nothing deity; a reference point, 
perfectly suited to represent simultaneously the middle band of 
the sky, the center of the number field, and the reference tone 
in a tuning system." 

"Ea/Enki, is 'god of sweet water' .  In its double role of 40:60 
and 60:40 it 'organizes the Earth' (as represented by the string) 
into do, fa, sol, do, the harmonic basis of the modern scale." 

"Enlil, the 'mountain god' was the active head of the pantheon." 
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Example 3.6.2 The Yantra for the Precession Cycle of the Equinoxes 

We discussed the precession of the equinoxes in Section 1 .4. The discovery 
of the precession of the equinoxes - a slow westward motion of the 
equinoctial points along the ecliptic - is generally credited to Hipparchus 
in 127  B.C. De Santillana and von Dechend [de-D) suggest that Hipparchus' 
discovery was actually the rediscovery of a fact known some thousand years 
previously. In Oriental Mythology, Joseph Campbell calculates the 
precessional cycle, which he believes may have been known to the ancient 
Babylonians, as 50 seconds of arc per year which amounts to a complete 
cycle in 25,920 years also known as the "great year". This compares within 
3 parts in 500 to the currently accepted figure of 25,726 years. Now 25,920 
divided by 60, the standard Babylonian unit of sexagesimal arithmetic, 
yields 432 .  By legend, 432,000 years was given by the last priest of Marduk 
(c.290 B.C. ) as the sum of the reigns of the ten antediluvian Kings [McCl] .  
The seven tones of the Pythagorean scale (integer ratios divisible by primes 
2 and 3 )  can also be placed in the octave interval between 432 and 846 
(see the bottom row of Figures 3. 1 4a and b) .  McClain has shown in 
Figure 3 . 1 6  that the yantra diagram can be widened to accommodate the 
seven tones of the Western scale along its transverse axis within the octave 
ratio 25,920: 1 2,960. Equivalent tones such as E, e and C, c are related to 
each other by the syntonic comma of 80:81 .  According to the computation 
scheme illustrated in Figure 3 . 1 2a, the fundamental tone D in Figure 3 . 16  
corresponds to the integer 3 x 3 x 3 x 3 x 5 x 26 

= 25,920, or  the "great 
year". McClain believes that these tonal mandalas reflect the musician's 
problems with a tuning theory based on "perfect" relations between integers 
and symbolizes the astronomer's problems in defining celestial cycles from 
the platform of an earth which wobbles on its axis while viewing planets 
which wander by about the distance of our commas from the planes of the 
ecliptic. 

Example 3.6.3 The Yahweh Diagram 

McClain points out that - in Mesopotamian base 60 arithmetic - the 
1 3  tones in the spiral of fifths require the monochord reference unit 
to be interpreted arithmetically as 60 to the fifth power, that is, as 
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Figure 3.16 Yantra for the precession cycle of 29,520 years. Figuring from the lower left-hand 
corner, the fundamental tone D ==  3 X 3 X 3 X 3 X 5 X 26 

= 29,520. 

777,600,000 in base 10. And traditional Kabbalist interpretation of YHWH 
as 10-5-6-5 can be read as 10  to the fifth power (meaning 100,000) times 
6 to the fifth power (meaning 7776)== 777,600,000. Is it possible that this 
reading is cleverly implanted in Genesis as the age of Noah's father (777)  
when the flood came in his 600th year, when his three sons were already 
100? 

The rationale is easy to follow if we remember that 60 integrates three 
pitch classes in the middle of this series. The musical proportion 6:8::9: 1 2  
multiplied by 5 into 30:40::45:60 defines D:G::A:D' rising (or falling). Each 
multiplication by 60 adds another pair to this series. This corresponds to a 
multiplication by 5 for an upward movement 7' in McClain's yantra, 3 for 
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a horizontal movement �. and multiplication by 4 for an increase of two 
octaves, i.e., 3 X 4 X 5 = 60. At the fifth power, eleven values are defined 
symmetrically (God surrounded by his minion of 10  men) and a twelfth is 
defined asymmetrically (at either G-sharp or A-flat) near the middle of the 
octave. But the Chosen People are taught to accept reversals of fortune as 
a normative life experience, and this twelfth value oscillates in the narrow, 
almost subliminal "comma" between these extreme values to define both 
beginning and end (prime aspects of Deity) in the 13-tone series. The 
following schematic diagram of the rising portion of McClain's yantra 
summarizes this musical state of affairs: 

605 
604 
603 
602 
60 

A-flat E-flat B-flat F C G D A E B F-sharp C-sharp G-sharp 

Thus Jewish logic, both loving and playful when it is understood, remains 
irrefutable through the ages, and Bible mathology can help in this 
understanding (cf. [McCS], [McC-S] , [McC3]) . 

3. 7 Musically Encoded Dialogues of Plato 

The reader may ask where the elaborate musical structure that forms the 
basis of McClain's musical matrices comes from, given the absence of explicit 
information about Sumerian musical theory. There are numerous suggestions 
by Greek philosophers of antiquity that Pythagoras' knowledge of music 
came from the East. McClain has made a careful study of the dialogues of 
Plato and has seen in them numerous references to the structure of the 
musical scale and its relationship to ethics, society, and politics. 

The yantra diagrams were based on the concept of limit [McC2]: 

"In political theory as in musical theory, both creation and the 
limitation of creation pose a central problem. Threatening 
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infinity must be contained. Conflicting and irreconcilable 
systems, be they of suns and planets, of even octaves and odd 
fifths, or of divergent political members of a republic must be 
coordinated as an alternative to chaos. What the gods have 
shown to be possible in the heavens, what the musicians have 
shown to be possible with tones, the philosopher should learn 
to make possible in the life political. Limitation, preferably 
self-limitation, is one of Plato's foremost concerns. His four 
model cities correspond to four different tuning systems each 
with its own set of generators and an explicit population limit." 

The structure of the musical matrix found in Figure 3 . 1 2  is alluded to 
in Plato's Republic - the formula four-three mated with five, thrice 
increased, produces two harmonies. 

This refers to the 3:4:5 "god" relationships that lies at the basis of the 
yantra as it is expanded three-fold to obtain Figure 3 . 10. 

In "Laws", Plato refers to Poseidon who "begot five twin births of male 
offspring". This appears to be a reference to the eleven tones that can be 
derived from the yantra of Figure 3 . 14  symmetrically placed in Figure 3 . 15  
excluding the tritone. 

The 37  tones of Figure 3 . 10 are related to the 37  guardians of Magnesia 
described in "Laws". McClain has hypothesized that these 37  tones are 
also related to the 3 7 right triangles with integer lengths that exist at 
approximately 1 degree intervals up to the 3 ,  4, 5 triangle with base angle 
of approximately 3 7 degrees [McC2]. This discovery goes back to Babylonian 
times where the theory of Pythagorean triples is developed on a cuneiform 
tablet known as Plimpton 322 dating to 1900-1600 B.C. 

McClain suggests that the tones on the central axis of the yantras, 
associated with the Pythagorean · tuning, correspond to Plato's "Rulers" or 
"citizens of the highest property class" in the "marriage allegory" of Plato's 
Republic. The rows above and below the central axis, associated with the 
Just scale, refer to the "auxiliaries" or "citizens of the second property 
class". Beyond these rows the tones become more and more dissonant and 
they correspond to the "slave classes". In the Plato's Republic, Socrates 
comments that "our young have become more unmusical", a possible 
reference to the tones in distant rows. 
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Plato's metaphor requires imaginative interpretation, hence we can never 
achieve more than a "likely story" based on them. Nevertheless, McClain 
has shown them to be a rich source of information. 

3.8 The Mathematical Structure of the Tonal Matrix 

Now that we have seen how ancient civilizations computed the matrix 
of musical tones, I will summarize the mathematical structure of the 
musical matrices of Figures 3 . 12  and 3 . 14  in modern terms [Kap1 2] .  All 
tones capable of being generated by primes 2, 3 and 5 are also related by 
the series 3, 4, 5, as we saw in Figure 3 . 1 2. Taking the ratios of these 
numbers in reverse cyclic order gives rise to three primary tones: t , 1 , 
and ! , the musical major third and fourth, above a fundamental reference 
tone, and the major sixth below where these ratios represent frequencies. 
In what follows I shall interpret these ratios to refer to frequency rather 
then string length. It should be noted that if ! is raised an octave, ( ! x 2 

= � ) it can also be interpreted as the ratio � , a minor third above the 
fundamental. 

In Figure 3 . 1 7a, the three primary tones are represented by arrows or 
vectors in a musical coordinate system with three axes. (Appendix 3.C is 
devoted to a brief introduction to vectors.) The center of the coordinate 
system signifies the fundamental tone, which I shall take in this discussion 
to be D. The endpoints of the vectors then refer to f sharp, a major third, 
G a fourth above D, and f, a major sixth below D. The "sum" of two vectors 
(see Appendix 3.C) corresponds to multiplying their ratios. A vector in 
the opposite direction corresponds to the reciprocal ratio. In Figure 3 . 1 7b, 
which is a numerical and geometrical representation of Figure 3 . 10, these 
ratios are summed along their lines of action to yield higher powers of the 
primary tones. 

In Figure 3 . 18a, i results from the sum of t and 1 ( i.e., t X 1 = -f ), 
and the sum of t ,  3 ,  and ! yields 1 or the fundamental ( i.e., t x 1 x ! = 1 )  which functions as the neutral or zero vector. In a l ike manner, 
every counter in Figure 3 . 10 represents a tone attainable from D by the 
appropriate sum of the primary vectors. For example, in Figure 3 . 1 8b, the 
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5 :4 

4:3 - - - - - - - - �  3 :4 

I 
I 

I 
I 

I 
I 

I 
I 1 I 

4:5 3:5 
(a)  

(b)  

Figure 3.17  The musical matrix seen as  a vector diagram based on the number 3,  4, 5. 
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5/4 X 4/3 X 3/5 = 1 
(a) 

5/4 X 3/4 = 15/ 16 
(b) 

5/3 X 4/3 X 4/3 X 4/3 = 80 x 4/8 l ::: 80/81 
(c) 

Figure 3.18 Application of the tonal vector diagram to representing tones, (a) a cycle of 
vectors yields the fundamental tone; (b) raising the fundamental by a major third and lowering 
it by a fourth yields a semitone below the fundamental; (c) generation of the syntonic comma 
80:81 . 

note a semitone below D in the Just scale, i.e., the ratio �� , is obtained by 
dd. 5 d 3 ( . 15 5 3 ) a mg 4 an 4 t.e., 16 = 4 X 4 . 

You will notice in Figure 3 . 10 that some tones such as C, c and e, E are 
repeated. These unavoidable discrepancies are the result of representing 
tones by rational numbers, which creates an endless proliferation of distinct 
tones in contrast to the closed circle of 1 2  tones for the equal-tempered 
scale. Let's compute these discrepancies. Using our vectors, we see in 
Figures 3 . 10  and 3 . 18d that to get e from E requires the addition of three 
4 d 5 3 an one 3 vector, i.e., 

(_±)3 x2 = 
(80x4)

. 
3 3 8 1  
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Bringing this tone down two octaves yields the comma of 80:8 1  that results 
from cutting the "serpent" (see Section 3.4 ). By using this vector approach, 
you can find rational approximations to J2 by computing the ratios 
associated with A flat and G sharp. 

3.9 The Color Wheel 

It is much debated among philosophers and musicologists as to whether 
ancient cultures were oriented more towards the visual or aural senses. In 
either case it is fascinating that the tonal structure described in the last 
section also forms the mathematical basis of the color wheel shown 
schematically in Figure 3 . 19. The three primary colors take the place of the 
three primary tones, while the complementary colors are analogous to the 
reciprocals. (A complementary color is the color that is created by the 
mind's eye and superimposed on the object when you stare at a primary 
color. ) Anharmonic shades (A) of white, black, or gray play the role of 
the fundamental. 

The primary colors: 

Cyan (C) 

Magenta (M) 

Yellow (Y) 

The complementary colors: 

Orange(O) 

Green (G) 

Violet (V) 

. h 
3 

Wlt S 
. h 

5 
Wlt -

4 

. h 
4 

Wlt -
3 

. h 
5 

Wlt -
3 

. h 
4 

Wlt S 
. h 

3 
Wlt -

4 

The anharmonic color (white, black, gray) A with 1 .  
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Figure 3.19 Analogy of tonal vector diagram to the color wheel. 

v 

Y + C = G  M + Y + C = A M + C = V  

Figure 3.20 Vector addition of colors. 

If the schematic diagram of the color wheel in Figure 3 . 19  is taken to 
be a vector diagram, then the primary and complementary colors are shown 
in the diagram in clear analogy to Figure 3 . 1 7 .  

Furthermore, (see Figure 3 .20) if equal amounts of C and M are "added" 
( i.e., the ratios are multiplied) they make V, i.e., 

C + M = V, 

also, 

M + Y = O  and Y + C = G . 

The result of adding all three primaries is a shade of gray (see Figure 3 .20), 
i.e., 

M + Y + C = A . 

Therefore the musical scale and the color wheel have analogous structures. 
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3.10 Conclusion 

To ancient mathematicians and philosophers, the concept of rational number 
was thought to lie at the basis of cosmology, music, and human affairs. 
Using imagery of the Rig Veda, McClain says: 

"The part of the continuum which lies beyond rational number 
belongs to Non-being (Asat) and the Dragon (Vtra). Without 
the concept of an irrational number, the model for Existence 
(Sat) is Indra. The continuum of the circle (Vtra) embraces 
all possible differentiations ( Indra). The conflict between lndra 
and Vtra can never end; it is the conflict between the field of 
rational numbers and the continuum of real numbers." 

Chapters 20-25 will show that this battle between rational and irrational 
numbers continues to the present where it lies at the basis of chaos theory 
and the study of dynamical systems: 

The impossibility of rationalizing either the musical scale or the cycles 
of the heavenly bodies was the great lesson of Mesopotamia, Kuan Tzu, the 
Rig Veda, and the allegories of Plato. It also led, as McClain states, "to the 
insight that number must be dethroned as an absolute and viewed instead 
as a tool for human rationality to order as best it can the evidence of the 
eye and ear". 

Looking back to the way in which musical metaphor led ancient people 
to an understanding of the universe reinforces the modem notion that 
there is not a single path that leads to truth. The kind of relativistic thinking 
in both music and projective geometry in which all tonal frames of reference 
and all locations of the observer are equally valid prepares the mind well 
for absorbing this lesson. 

Appendix 3.A 

3.A. l Logarithms and the logarithmic spiral 

Consider the geometric series, 

. . .  , k-2 , k-1 , k, k2 , k3 , . . . .  
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Table J.Al The logarithmic spiral. 

r 

- 2 z-2 _ 1 
- 4  

- 1  

0 

2 

3 

4 

5 

z-1 

2o 

21 

22 

23 

24 

25 

_ l - 2 

= 1  

= 2  

= 4 

= 8  

= 1 6  

= 32 

X 2X = y 

x = log2 y y 

If successive numbers from this series are taken to be the distance to 
the origin of an x,y-coordinate system at increments of 90 degrees, then 
they determine a set of vertex points of a logarithmic spiral as shown in 
Figure 2 . l l a. Notice that the radii form a geometric series while the 
corresponding angles of the spiral and the exponents of the series form 
arithmetic series. Table 3.Al shows the points on a logarithmic spiral for 
k = 2. 

Although this table defines only the vertex points of the log spiral, the 
other points can be computed by inputting other angles, e.g., the radial 
distance at 45 degree is 2

112 since �� = t . 
Besides defining the points on a logarithmic spiral, Table 3.Al also 

represent the following pair of inverse functions: 

i) exponential to the base 2 written as, y = expz (x) and y = 2\ and 
ii) logarithm to the base 2 written as, x = logz y. 
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3.A.2 Properties of logarithms 
Table 3.Al also illustrates four major properties of logarithms: 

i) the logarithm of 1 to any base equals 0; e.g., log2 1 = 0; 
ii) the log of the base equals 1 ,  e.g., logz 2 = 1 ;  
iii) as two numbers multiply their logarithms add. For example, while 

the numbers 2, 3, and 5 from the left hand column of Table 3.A1 add, 
i.e., 2 + 3 = 5, the corresponding numbers in the right hand column 
multiply, i.e., 4 x 8 = 32. 

iv) as a number is taken to a power, its logarithm is multiplied by the power. 

We have l imited ourselves in Table 3.Al to finding logarithms of numbers 
that are powers of 2. How can we compute log23 ?  You may be inclined to 
use your calculator, but you will be disappointed to find that calculators 
have no direct way of computing log23.  The answer is found in a formula 
that we introduce without proof, 

(3.Al ) 

If we take b = 10 then we see that calculators are able to compute logarithms 
to the base 10, and for a = 2 and b = 10, we find that, 

Therefore, 

log10 y 
logz y = -- = 3.322 log10 y .  

logw 2 

logz 3 = 3.322 log1o 3 = 1 .585 . 

To summarize the properties of logarithms to any base k > 0, 

logk k = 1 , 
logk 1 = 0 , 

a 
logk (ab) = logk a +  logk b and logk b = logk a - logk b , 

logk ab = b logk a .  



90 Beyond Measure 

3.A.3 Logarithms and the musical scale 

The frequency ratio, r, of each of the 1 2  tones of the equal tempered scale 
from the fundamental tone of value 1 to the octave of value 2 is given by 
the following geometric series, 

_L _L _l_  ll 
1, 2 12 , 2 tz , 2n , . . .  , 2n , 2 .  

The corresponding log2 series is, 

o _!_ .!:... l_ !! 1 ' 1 2 ' 1 2 ' 1 2 ' " " " ' 1 2 ' . 

(3.A2a) 

(3.A2b) 

Since the product of tonal ratios is equivalent to the sum of their 
intervals, the logarithm can be used to measure intervals since logarithms 
have this property. In order to give each interval a value of 100 cents 
we multiply the tones of Series (3.A2b) by 1 200 so that, each of the 1 2  
semi tones within an octave are assigned a value of 100 cents. Since 
the interval scale is logarithmic, to convert a ratio r, to cents use the 
formula, 

Teems = 1 200 logz r = 1 200 X 3.322 log10 r .  

Appendix 3.B The Pythagorean Comma 

The Pythagorean comma approximates the degree to which the canonical 
year of 360 days differs from the solar year of 364.25 days and the lunar 
year of 354 days (twelve 29.5 day months) .  Twelve musical fifths amount 
to approximately seven octaves, the degree of approximation being the 
comma, i.e., 

(%)'
= 129.746 and 27 = 128 . 

Therefore, the comma is related to the ratio, 

1 29.746 
= 1 .01364. 

1 28 
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In units of cents, 

rcents = 1 200 X 3.322 X log10 1 .01364 = 23.45 cents 

or 0.2345 part of a semitone. 
However, the ratio of the solar to the canonical year is 3�!65 = 1 .01 1 8  

or 20.3 1 cents differing from the comma by about 3 cents. The ratio of the 
lunar to the canonical year is, j�� = 1 .0169 or 29. 10  cents differing from 
the comma by about five cents. 

Appendix 3.C Vectors 

Why use vectors to represent tones ? A vector is a quantity with 
magnitude and direction but is independent of its point of origin as shown 
by vectors a and b shown in Figure 3 .Ca. In other words, move a vector in 
space without altering its length or direction, and its identity does not 

(a) 

(b) 

Figure 3.C (a) Equivalent vectors; (b) addition of vectors. 
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change. We say that vectors are translation invariant. On the other hand, 
musical tones are independent of their identification with a particular 
fundamental tone, i.e., they are tonally invariant. In Section 3.8, we used the 
concept of addition of two vectors to represent the product of musical 
intervals. In Figure 3 .Cb, vector b is added to a by translating b so that the 
tail of b touches the tip of a. The vector sum is then the vector obtained 
by connecting the tail of a to the tip of b. 



4 
The Projective Nature of the Musical Scale 

4.1 Introduction 

Music is the true element from which all poetry springs 
and to which it flows back. 

Richard Wagner 

McClain's research suggests that the musical scale was a key factor in the 
advancement of mathematics and cosmology in ancient civilizations both 
Eastern and Western. Pythagoras became a student of these ideas and through 
him they became a part of Greek culture. 

After the fall of Greece, the ideas expressed by the musical scale went 
underground and were revived during the Renaissance when the writings of 
classical Greece that survived the passage of time, formed the intellectual 
basis of this age. The artists and architects of the Renaissance are considered 
by historians to be among the greatest mathematicians of their age. The 
development of perspective is often considered to be the most significant 
mathematical creation of the Renaissance, and it is interesting that it is 
based on the same concepts of projective geometry as the musical scale. 
In fact perspective presents the eye with multiple versions of reality 
depending on the position of the observer in much the same way, for the 
ear, that the perception of tone does for the ear is dependent on the choice 
of the fundamental tone. 

This chapter explores the direct connection between projective 
geometry and the musical scale. 

93 
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4.2 A Perspective View of the Tonal Matrix: The Overtone Series 

Section 3.4 stated that the pitch classes can be mapped onto a two­
dimensional grid. Assign a pair of integer values (p,q) to the coordinates 
of a Cartesian coordinate system in the positive quadrant to form what 
mathematicians refer to as a lattice shown in Figure 4. 1a. A rational number 
is defined to be the ratio t when p and q have no common factor, i.e. , they 
are in lowest terms, or as mathematicians say, they are relatively prime. If 
(p,q) is connected by a line to the origin (0,0) ,  the line with slope f can 
be associated with the rational number t· The first lattice point encountered 
by the line is (p,q) ,  e.g., (3,2) in Figure 4. la, and each line contains an 
infinite number of lattice points, e.g. , (6,4 ) ,  (9,6) ,  etc. An irrational number 
I ,  e.g., .,Jz cannot be represented by the ratio of integers so that a line 
with slope 1/l, e.g. , 1N2 intercepts no lattice point. The family of lines 
representing the rational numbers cuts the line y = 1 at coordinate points 
( *, 1) .  In Figure 4.1 b a subset of lines representing several musical ratios 
from either the Just or Pythagorean scales are shown with the lattice points 
deleted. For example, � represents the interval of a fifth, while f represents 
the fundamental tone and f represents an octave interval below the 
fundamental. Below the line x = y, the tones are from the falling scale, 
while above x = y, the tones are from the rising scale. 

I F. 4 1b  h . . f 1 " 1 2 3 3 4 d 2 " th n tgure . t e Intersection o mes: z , 3 , 4 , z , 3 an T WI 
y = 1 is shown. These are the positions on a monochord at which the 
movable bridge should be placed to give rise to string length corresponding 
to the intervals of an octave, fifth, and fourth above the fundamental 
located at the bridge position ( 1 , 1 ) . Tones from the rising scale are found 
to the left of the bridge while and their reciprocal values from the falling 
scale are found to the right. What we have here is a perspective transformation 
of points in the plane to points on the line from a projection point located 
at the origin, (0,0). The points ( * ,  1) are known as the homogenous coordinates 
of line y = 1 (see Appendix 2.A). The point at infinity on the line y = 1 
has projective coordinates ( 1 ,0) .  The projective coordinate (0, 1 )  represents 
the placement of the monochord bridge to the point of zero string length. 

If the tonal values are interpreted as frequencies, then the tones and 
lines are represented by the ratio, � . The series of tones t , f , f , . . .  , occur 
quite naturally. When the string of an instrument is plucked, not only the 
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p q 
y=�x  

6 

.!! y 

(b) 

3 4 

I T 

4 3 
3 
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! 

Figure 4.1 {a) Coordinates of a Cartesian Coordinate System are assigned integer values; 
(b) Representation of tones on a two dimensional grid. The numbers on the line y = 1 are 
expressed in homogeneous coordinates and represent the ordering of tones on a monochord. 

fundamental tone is heard, but also a less prominently expressed sequence 
of overtones, known as the acoustic scale emerges with the tonic. The 
frequencies of the overtones are all multiples of the fundamental, i.e., if the 
fundamental has frequency fo then the overtone series is: 2fo, 3fo, 4fo, . . .  
The first eight overtones when lowered to fit into a single octave are given 
in Table 4. 1 ,  along with their tonal names considering the fundamental 
at C. 

The 7:4 ratio defines the natural seventh slightly lower than B flat in 
the scale. In Figure 4.2a these ratios are placed on a number line, and they 
are seen to subdivide the octave interval between 1 and 2 evenly into four 
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fo 

2 

3 

4 

5 

6 

7 

8 

1 I 

2 
2 

4 
4 

Table 4.1 The overtone series. 

fo lowered to the octave 

5 
4 

l :  l 
2 : 1  

3:2 

2 : 1  

5:4 

3:2 

7:4 

2 : 1  

(a) 

3 
2 
(b) 

6 
4 
(c) 

7 
4 

Tone name 

c 
C' 

G 

C' 

E 

G 

B flat 

C' 

2 I 

4 
2 

8 
4 

Figure 4.2 Overtone sequence: (a) subdividing the octave into one interval; (b) two intervals; 
(c) four intervals. 
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intervals. In Figure 4.2b the first 1 6  overtones divide the interval between 
1 and 2 into eight subintervals. This can continue indefinitely in theory, 
although all but the first few overtones are inaudible. 

While the overtone series, 1 ,2 ,3 ,4, . . .  , is manifested, its reciprocal 
. th de . 1 1 1 . k' d f h . h . senes, e un rtone senes, 2 ,  3 ,  4 , . . .  , ts a m o p antom m t at tt 

is implied by the first series but not present in naturally occurring sound. 
The overtone series and its reciprocal can be viewed in a revealing way 
in the Lambdoma diagram of the 19th century musical scholar, Albert 
Von Thimus, 

.1 
1 

3 T 

1. 
1 

1 1 
1 2 1 3 

1 4 
in which the overtone series is placed on the right-leaning diagonal ( J )  
while the reciprocal undertone series is on the left-leaning diagonal ( r;..._ ) . 
Both emanate from the point f . When the lambda is expanded to the grid 
shown in Figure 4.3, it is seen to be none other than a somewhat transformed 
version of the perspective diagram of Figure 4. 1 with the lines identified by 
the inverse ratios, 1.. X 

The Lambdoma has been endowed by the musicologist, Hans Kayser, 
with much theological and philosophic importance [Haa]. Whether this 
figure arose first in ancient neo-Pythagorean writings as Von Thimus says, 
or as others say in modem German texts, it does serve as an interesting 
metaphor. For example, the idea developed in Timaeus, is that there is a 
highest divinity who created the plan of the world and who then instructed 
an under-god, the "demiurge", to create the material world according to the 
model of the plan. In the Lambdoma, the demiurge can be represented by 
the symbol, f , while the highest divinity is % . The Lambdoma itself will 
then be the created world. (The demiurge can also be identified with 
the founders of religions - Buddha, Christ, Mohammed, Moses, etc.) The 
fact that every point of the Lambdoma connects by a line to % was seen 
by Kayser as an expression of the "inherence of the divine in all that is 
created" [Haa]. 
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ct' 

o;0 1111 ovERTONE sERIES 
\\\\ UNDERTONE SERIES 
- - - EQUAL·TONE SERIES 

\ c, 

Figure 4.3 The "lambdoma" diagram of Von Thimus representing tones in a perspective diagram 

projected from the point � .  

Another example of the relationship between projective geometry and 
the musical scale was discovered by R.A Schwaller de Lubicz on an ancient 
Egyptian table. Before describing this discovery we must take a brief detour 
in order to gain an understanding of the concept of the three means of 
importance to music. 
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4.3 The Three Means 

Various intervals of the scale can be related to each other by splitting the 
octave by its arithmetical, geometrical, and harmonic means, all good 
candidates for the title mese, or mean between the lowest tone of the octave 
known as the hypate and the highest tone an octave above the fundamental 
called the nete. 

i) The arithmetic mean of an interval [a,b] is the midpoint, c, of the segment 
and the points a,c,b form an arithmetic progression (e.g., 1 ,2,3 ,4, . . .  ) ,  
i.e., b - c = c - a and c = a;b . 

ii) The geometric mean is the point, c, such that � = � ,  i.e. , c = J;;b and 
a,c,b form a geometric progression (e.g., 2 ,4,8, 16, . . .  ) .  

iii) The harmonic mean, which is less familiar, i s  a point, c, such that the 
fraction by which c exceeds a equals the fraction by which b exceeds 
c, i.e., c�a = bbc . As as result, 

2ab 
c = --

a + b  (4. 1 )  

and the series a,c,b is referred to as an harmonic sequence (e.g., r ,  } , 
t I t , . . .  ) .  

In  Chapter 7 these three means will be  seen to be  the key to relating the 
musical scale to systems of architectural proportion used by the ancient 
Romans. A geometrical construction of the harmonic mean of two lengths 
is presented in Appendix 8.A. 

4.4 Projective Analysis of an Egyptian Tablet 

We have seen that the same mathematics, namely projective geometry, can 
be used to characterize both the musical scale and visual perspective. This 
is another instance, in addition to the color theory discussed in Section 3.9, 
of the similarity of underlying mathematical structures. I will now present 
another example of this relationship between the senses. 
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Figure 4.4 An ancient Egyptian harmonic grid. 

There is a suggestion that Egyptian art and architecture of the Old, 
Middle, and New Kingdoms was set out upon a grid of 1 9  squares. R.A. 
Schwaller de Lubicz is an archaeologist who devoted his life to studying the 
metaphysics and meaning of the Temple of Luxor in Egypt [Schw] , [Lam]. 
In the process he discovered the Old Kingdom tablet shown in Figure 4.4 
displayed on a grid of 18 by 19 [Wes]. Note that the grid cuts through the 
top of the figure's head. This is the location of the neocortex, thought to 
be the seat of consciousness and sense of self or ego. 

The grid shown in Figure 4.4 was drawn on the back of the tablet and 
then superimposed by Schwaller de Lubicz over the front in order to show 
its relationship to the actual drawing. Notice that the human figure has 
been divided into 1 9  equal parts with the uppermost grid line cutting off 
the nineteenth unit of the grid. Then 18 ,  1 6, 14 i ,  12 ,  9, and 6 of these 
parts from head to foot have been selected as heights for key elements of 
the engraving. 

How can we make sense of this sequence? Figure 4.5, adapted by 
[Ebe], from a diagram found in West, shows that if the height, 18 ,  is taken 
as unity, the numbers of the series correspond to ratios of the Just scale. 
But this is only part of the story. To delve further into the mathematical 
significance of this series requires us to take a brief detour in order to 
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8 9 
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Figure 4.5 Harmonic construction of a lyre scale correlated with the Egyptian grid of 
Figure 3 .21  adapted from West by Eberhart. 

gain an understanding of the concept of the three means of importance to 
music. 

4.4. 1 An analysis of Schwaller De Lubicz's Number Sequence 
Returning to Schwaller De Lubicz' Egyptian number series, Eberhart 
[Ebe] recognized that each number of the series: 6, 9, 1 2 ,  14! , 16 ,  18  
i s  the harmonic mean of 18  and the preceding number, e.g. , using 
Equation ( 4 . I ) , 

9 = 2x 6x 1 8 . 
6 + 18 

In fact, this sequence can be extended to a doubly infinite series extending 
from 0 to 1 8. The series can then be seen to be a manifestation of a 
projective transformation of the interval of [0, 18] onto itself in the manner 
described in Section 2.5 ( i.e., growth measures) in which both 0 and 18  are 
transformed to themselves, i.e, they are fixed points of the transformation. 
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The transformation is carried out with the aid of the auxiliary lines shown 
in Figures 4.4 and 4.5 and is characterized by a cross-ratio of .It = 2 
(see Section 2.3 for a definition of cross-ratio). The details of this 
transformation are given in Appendix 4.A. 

The length from 0 to 1 8  is now considered to be the string length of 
a monochord corresponding to the fundamental tone, C. If a typical number 
in the Egyptian series is denoted by P then ratio r = P: 1 8  is the interval 
above C corresponding to P, and it can be thought of as the tone emitted 
by the string when the bridge is placed at P and the string is plucked on 
the side of the bridge nearest to 0. If the length of string on the other side 
of the bridge is plucked, then the interval of the emitted tone is 1- r. 
Table 4.2 lists the points, P, for which the emitted tone is an interval from 
the Just scale. The fifth column of Table 4.2 shows that the two tones r and 
1- r differ by an integral number of octaves represented by the tone given 
in the fourth column (the superscripts denote the number of octaves that 
1- r lies above the fundamental) .  

Eberhart has shown that if the Egyptian series is mapped by a perspective 
transformation in which the fixed point, Y = 18, is mapped to infinity, then 

Table 4.2 Di Lubicz's analysis of the New Kingdom Tablet 
in terms of the musical scale. 

p 

0 

2 

31 5 
6 

9 

1 2  

141. 
5 

1 6  

1 8  

P: 18  = r 

0 

1 :9 

1 : 5  

1 :3 

1 : 2  

2:3 

4:5 

8:9 

1-r 

8:9 

4:5 

2:3 

1 :2 

1 :3 

1 :5  

1 :9 

0 

Tone r:( l-r) P' 

c 0 0 

D 1 :8  1 
8 

E 1 :4 l 
4 

G 1 : 2  1 
2 

ci 1 : 1  1 

GI 2 : 1  2 

Ez 4: 1 4 

D3 8 : 1  8 

c 00 
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the other points P are mapped to the geometric sequence P' with ratio 2 
(the cross-ratio of 2 is preserved and becomes the multiplier of the geometric 
series) given in the last column of Table 4.2. 

There may be a relationship here to the "right eye" of Horus, the hawk, 
symbol of Pharoah, shown in Figure 4.6. McClain conjectures that the 

1 h c 1 1 1 1 1 d 1 h' h · h' H g yp s ror 2 ,  4 , 8 , 16 , 32 , an 64 w tc constttute t ts eye - orus 
always symbolized the ruling Pharoah - may be musically determined. It is 
McClain's hunch that the "left eye" of Horus, usually not shown, may have 
symbolized integers ( i.e., arithmetic ratios) while the right Eye symbolizes 
the intellectual artistry inherent in the ability to manipulate integer inverses. 
This fits nicely with the late historian of ancient mathematics Otto 
Neugebauer's observation [Neul] that the only ancient "book of secrets" he 
ever discovered concerned computation with fractions. 

So we see that the harmonic mean is related to a kind of generalized 
octave. Looked at in another way, if the bridge of the monochord is placed 
at a length from the Egyptian series, the preceding length is the generalized 
midpoint. For example, if the bridge is placed at 9, which projects to 1 ,  then 
the preceding length, 6 ,  corresponds to t . This justifies the reference to 
harmonic means in music as mese. Details about how to carry out this 
perspective transformation are given in Appendix 4.A. 

It is not likely that the ancient Egyptians had any knowledge of projective 
geometry, yet the similarity of the structure of projective transformations 
and the musical scale is dramatically demonstrated by this example. 
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4.5 Conclusion 

Music is not built around an absolute space of tones. Each musician can 
define his or her own fundamental tone, and build a musical fabric from 
this base. A musical composition is essentially unchanged by the choice of 
a different fundamental tone, although certain emotional elements are 
determined by such a choice. McClain refers to this lack of absoluteness in 
music as "the myth of invariance". It is the relative basis of the tonal 
matrix that also makes projective geometry the natural framework within 
which to express the structure of the musical scale. 

Appendix 4.A 

The most general projective transformation with two fixed points (co-basal 
transformation) is shown in Figure 4.Al (see Section 2.5 ). The fixed points 
are located at X and Y on line l. An arbitrary line m is drawn incident to 
X and an arbitrary point of projection is placed at 0. Locate a second point 
of projection, 0', on the extension of line segment, OY. The location of 0' 
on this line is determined by the location on l of an arbitrary point A and 
its transformed point B. Line segment OA transforms A to A' on m while 
the location of 0' is determined by the intersection of A'B with the line 
through OY. The pair of transformations of first A to A' through 0, and 
then A' to B through 0' results in the projective transformation of A to B. 
Notice that any point between X and Y has a projective image under this 
pair of perspective transformations. Only X and Y are transformed to 
themselves. The cross-ratio of this transformation is defined as: 

(4.A l )  

Now let's see how the Egyptian number series conforms to this picture. 
Let line l be the x-axis of a coordinate system in Figure 4.A2. Let X be the 
point x = 0 (the origin of the coordinates) and locate Y at x = 1 8. Choose 
arbitrary line m drawn through the origin and choose 0 located at infinity 
in a direction perpendicular to line l (remember that in the projective plane 
there are different points at infinity in each direction, (see Section 2.2)) .  
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0 

X B A y 

Figure 4.Al A co-basal projective transformation (see Section 1 .4.3 ). 

m 

0 = 00  0' 

0 = 00  
Figure 4.A2 Projection point 0 is transformed to infinity to yield the harmonic sequence of 
tones in Figure 3.22. 
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Therefore 0' is located on the line perpendicular to l through x = 18 .  Call 
this line YO. To determine 0' consider the point, A, located at x = 9 and its 
transformed point, B, at x = 1 2. The line perpendicular to l at point A 
intersects m at A'. The extension of line A'B intersects line YO at point 0'. 
This determines the transformation. A careful analysis (not given) shows that 
B is the harmonic mean of point A and Y given by the equation for the 

B =  
2AY

. 
A + Y  

(4.A2) 

Using A =  9 and B = 1 2 ,  the cross-ratio is computed from Equation (4.A1 ) :  

It - ( 1 2  )V( 9 )- 2 -
1 8 - 1 2  1 8 - 9  

- . 

The other points of the Egyptian transformation are generated in a similar 
manner by a growth measure (see Section 2.5 ) and all pairs of transformed 
points have cross-ratio 2. It can also be seen that points X and Y are indeed 
fixed. 

The fact that the cross-ratio is 2 suggests that by mapping the fixed 
point Y on line l to infinity on an arbitrarily line l' in the manner shown 
in Figure 2 . 10  of Section 2.5, the points of the series can be transformed 
to a geometric sequence with common ratio 2 on line l'. Figure 4.A3 shows 
how this perspective transformation is carried out. An arbitrary line l' is 
drawn intersecting l on the far side of Y = 18 .  Line XX' maps X = 0 on l 
to an arbitrary point X' = 0 on l'. Draw a line through Y parallel to l'. This 
maps Y = 1 8  on l to the point, Y', at infinity on l'. The point of perspective, 
0, is located where YY' intersects XX'. Now the point P = 9 is transformed 
to the point P' = 1 at the intersection of the extension of line OP with l' 
(this defines the length of a unit on line l') .  The other points of the 
Egyptian series are mapped in a similar manner to l'. Their values are 
determined from the cross-ratio which is preserved by all perspective 
transformations (see Section 2.3 and Equation ( 2.2) ) .  To do this, rewrite 
Equation (4.A 1 )  as follows for two transformed points A and B on line l and 
their corresponding transformed points, A' and B', on l': 

2 = 
( B'X' )(Yf\' )

. 
A'X' Y'B' 
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e 

Y' = oo  

Figure 4.A3 Transformation of the fixed point at Y = 1 8  to oo yields a growth measure on a 
semi-infinite line. 

(fixed) 
0 2 H 6 9 

(fixed) 
12 14t 1 6  18 

Figure 4.A4 West's Ancient Egyptian grid revealed by  Eberhart to  be  geometric, doubling 
when carried out in one direction, halving in the other. 

But since Y' has been transformed to infinity, the ratio �� = 1 , and this 
equation reduces to 

B'X' 
2 = ­

A'X' ' 

the multiplier of a geometric sequence for the transformed points on line l'. 
If A' is taken to be the point 1 .  Then it follows from this equation that 
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X'B' = 2, i.e., point B' is located at P' = 2 on l'. Other images of the 
Egyptian sequence are members of the double geometric sequence: 

1 1 1 . . .  , 8' 4 '  2' 1, 2, 4, 8, . . .  

as Figure 4.A4 shows [Ebe]. 



5 
The Music of the Spheres 

Next I saw the most lucid air, in which I heard ... many kinds of musicians praising 
the joys of the heavenly citizens ... And their sound was like the voice of a 

multitude, making music in harmony. 

Hildegard von Bingen 

5 . 1  Introduction 

According to the research of Ernest McClain, the relation of music and 
number to cosmology may go as far back as the ancient civilizations of 
Mesopatamia, India, and China. Twenty five hundred years later Pythagoras 
was recorded as saying: 

"There is geometry in the humming of the strings. There is 
music in the spacing of the spheres." 

To a degree that we have difficulty understanding in modern terms, 
there exists a rich ancient lore expressing the belief in a cosmic harmony 
loosely referred to as "the music of the spheres." In this chapter I will 
relate some of this lore and then examine its influence on Johannes Kepler 
( 1 5 7 1- 1 630). 

Although Kepler is known primarily for his astronomical discoveries, he 
also attempted to relate his observations of the movement of the planets to 
imagined sounds they created during their motion. I shall explore Kepler's 
musical theories and another number series discovered by the German 
astronomers Titius of Wittenberg ( 1  729-1 796) and Johann Elert Bode 
( 1 7  4 7- 1 826) that predicts the positions of the planets. 

1 09 
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Kepler is the last of an ancient tradition that sought to find meanings 
in the natural world for musical harmonies. This chapter is dedicated to 
examining the root of this tradition. Although Kepler put forth a Herculean 
effort to find a workable correlation between the movement of the planets 
and the tones of the musical scale, we shall see that he largely failed in his 
effort. In Section 5.6 I will describe a musical correlation between the 
planets discovered by atronomer Gerald S. Hawkins and myself, that is 
statistically meaningful. Also, in the last chapter, I will show that Kepler's 
hunch that phenomena of the heavens are related to the ratio of small 
whole numbers ( tonal ratios) now have a plausible explanation in terms of 
dynamical systems theory. 

5.2 The Music of the Spheres 

The Greek myths of Apollo, Orpheus, and Hermes Trismegestus illustrate 
the spiritual power of music. Joscelyn Godwin [God] has examined the rich 
ancient lore pertaining to the "music of the spheres" as it appears in all of 
the religions of the world, as discussed in his book Harmonies of Heaven and 
Earth. In this section I shall excerpt some of his writings on this subject. 

"There is a characteristic passport to the Celtic Otherworld, reminiscent 
of the Golden Bough with which Aeneas descended to Hades in Book VI 
of Virgil's Aeneid. It is a silver branch with golden fruits, three or nine in 
number, which strike together to make an enchanting melody. In Sickbed 
of Cuchulain we meet the tree again in the island palace of Labra, actually 
giving off its music: 

From a tree in the forecourt 
Sweet harmony streams; 
It stands silver, yet sunlit 
With gold's glitter gleams. 

The hero, Bran, was lulled to sleep by sweet music coming from he knew 
not where. When he awoke, he discovered a musical branch by his side." 

"Another legendary king of Ireland, Cormac MacAirt, came upon this 
same branch in the hands of an unknown man. Its music seduced him so 
that he sold his own wife and children in exchange for it. It was his quest, 
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Orpheus-like, to retrieve them that led him through the mist of a Paradise 
teeming with white birds and watered by a fountain with five streams 'more 
melodious than mortal music'." 

Godwin follows the approach of the French savant Henry Corbin in 
referring to "this World of the Imagination" or of the "Soul" as an "Imaginal" 
world. The Imaginal World has its elements, its cities, and its heavenly 
spheres even they have no material substratum. 

"Armed with the concept of the Imaginal World, we can make an 
intelligent approach to the age-old myth of the Ascent through the Spheres 
and the music that is heard there - Pamphylian soldier in Plato's 'Myth 
of Er' saw the system of the seven planets (Mercury, Venus, Mars, Jupiter, 
Saturn, the Sun, and the Moon) and fixed stars with a siren standing on 
each sphere 'uttering one tone varied by diverse modulations; and the 
whole eight of them composed a single harmony' ." (See Figure 5 . 1 . ) 

"Following Plato, Cicero ended his Republic with a cosmic vision, 
presented as a dream. The Roman hero Scipio Africanus saw nine spheres 
( including the Earth) making a 'grand and pleasing sound' .  His deceased 
grandfather, acting as a guide, explained that it came from the rapid motion 
of the spheres themselves, which although there are nine, produce only 
seven different tones, 'this number being, one might almost say, the key to 
the universe' ." 

"The Indians of the Peruvian Andes, who have a rich cosmological 
system, say that the Sun makes a sound when rising. A passage in the 
Talmud regards the Sun's noise as something to be taken for granted, 
unnoticed by its very familiarity like the din of the Nile cataracts, the 
Catadupa, which classical writers often compared with the music of the 
spheres. 'Why is the voice of a man not heard by day as it is heard by night? 
Because of the wheel of the Sun which saws in the sky like a carpenter 
sawing cedars ' ." 

"During the Dark Ages the hymns of the Church Fathers blossomed 
into plainchant. What we know today as Gregorian chant is only one branch 
from the fertile stem of Christian monophony. The others were suppressed, 
lost, or largely forgotten. The seven tones can be heard as the notes of the 
planets, the wandering of the melody through them feels like a journey 
around the spheres. Plainchant, like the mystery of the Mass, offers to each 
what he or she is able to receive." 
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Figure 5.1 The seven planets of ancient times (Mercury, Venus, Mars, Jupiter, Saturn, the Sun, and the Moon) each assigned to its own sphere. 

"The writings of the Kaballah contain a vision of a harmonious universe in which not only the angels sing: the stars, the spheres, the merkavah (Chariot-Throne) and the beast, the trees in the garden of Eden and their perfumes, indeed the whole universe sings before God. Although this source says that only Moses and Joshua could hear such music, in later Kaballistic 
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schools, particularly the Hasidim, the privilege is extended to the zaddiks, 
or l iving spiritual masters." 

"In the public worship of Islam, music has no place beyond the simple 
chanting of the Koran. As if in compensation, the Moslem esoteric orders -
the Sufis - have made music one of the strongest features of its religious 
practices. The general term for it sama, stresses the passive nature of this 
musical way. The Whirling Dervish of the Near East is one such development. 
Properly called the Mevlevi Order, and founded in Konya, Turkey by the 
Persian poet Rumi ( 1 207-1273 ), these people still practice a sama or whirling 
dance accompanied by the music of the nay, or reed flute. They dress in tall 
felt hats shaped like truncated cones, and white gowns with broad skirts 
that stand out as they whirl. Their hats are said to be tilted at the same 
angle as the Earth's axis, and their dance to symbolize the movement of the 
planetary spheres as they circle in perfect order and love for their Lord. 
Rumi, explains the purpose of this devotion: 

We all have been parts of Adam, we have heard these melodies in 
Paradise. 

Although the water and earth of our bodies 
have caused a doubt to fall upon us, 
something of those melodies comes back to our memory." 

The Kaaba is the most sacred structure in Islamic tradition. Each year 
pilgrims make a tawaf, a counterclockwise walk consisting of seven 
revolutions around the Kaaba starting at a meteorite set in a silver yoke at 
the southeast comer. They make 3 revolutions quickly and 4 more slowly. 
Some traditions say the tawaf ritual represents the cosmos: 3 circuits for the 
fast-moving moon, Mercury, and Venus, and 4 for the sun and outer planets 
Mars, Jupiter and Saturn. In this sense the tawaf represents a kind of silent 
music of the spheres [Hawl ] .  

"In the Hindu world, the use of music for the attainment of higher 
states merges into a whole science of sound and its practical application to 
Yoga. In Shabda-yoga, one sets out to discover the Inner sound and to 
identify oneself thereby with the universal Sound Current. The inner ear 
may perceive it at first in a variety of forms: noises as of bells and other 
instruments, of animal and human voices, of waters and thunders, sometimes 
in systematic sequence and with reference to various energy-centers in the 
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body in which they seem to occur as one's practice progresses. Clearly the 
Shabda-yogin is exploring the same worlds, or states as the Jewish and 
Muslim mystics, only more particularly in aural mode: 

T errestial music lets us hear a feeble echo of those sweet 
modulations which the ear of common mortals cannot grasp, 
and awakens in them the uplifting memory of what they heard 
in a previous life - Of all instruments, the seven-stringed lyre 
is the most apt for recalling to men the eternal concert of the 
grand cosmic symphony. Those who cultivate the art of music 
are preparing themselves a path through the heavens to the 
place of the Blessed, just as surely as the most powerful geniuses 
- Macrobius says that 'The laws of many people and lands 
set down that one should accompany the dead to their burial 
with song: this usage is founded upon the belief that souls, on 
quitting the body, return to the origin of music's magic, that 
is to heaven' ." 

The music of the spheres and other neoPlatonic ideas were embraced 
by Pico della Mirandola and Marsilio Ficino ( 1433-1499) and found their 
way to the Italian Renaissance. 

5.3 Kepler's Music of the Spheres 

Throughout his life, Kepler pursued his quest for evidence of a harmony of 
the world alluded to in ancient writings. He believed that the geometry of 
the planetary orbits was in some way connected to the musical scale. 

Kepler's Mysterium Cosmographicum, was his first attempt to explore these 
connections. Published when he was 23, long before he discovered that the 
planets revolved around the sun in ellipses, the orbits of the six known 
planets, were correlated with the harmonic relations between the five 
Platonic solids each inscribed and circumscribed about each other as shown 
in Figure 5.2. Twenty five years later, making use of the observations of the 
astronomer Tycho Brahe, he published Harmonices Mundi which included, 
coincidentally, his famous three laws which led Newton to his discovery of 
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Figure 5.2 The planetary system of Johannes Kepler. 

the laws of motion [Kep]. However, these laws were not of primary 
importance to Kepler. It was actually his hypothesis that the movements of 
the planets coincided with musical intervals that captured his imagination. 
It was Kepler who first introduced the notion of major and minor scales in 
a modern sense in order to study the harmony of the planets. He was a 
serious student of music who learned the relationship between pitch and 
string length directly from experiments with a monochord [Gin]. 

Kepler's most important discovery was that the planets move around 
the sun in ellipses and not in circles as in Copernicus's model and as all 
previous geocentric models required. In Chapter 4 of Harmonices Mundi, 
Kepler examines the ratios of many different data for the planetary orbits 
including their distance from the sun, solar years, daily arcs, etc. and compares 
these ratios to corresponding musical ratios from the Just scale. The results 
did not satisfy him until he tabulated the motion of each planet at perihelion 
(the closest approach in its orbit to the sun) and aphelion ( the furthest 
approach from the sun in its orbit) as measured from the sun over a 24-hour 
period and took the ratio of the angular traversal of one planet at aphelion 
with either the same planet at perihelion or an adjacent planet at perihelion. 
The results are tabulated in Appendix S.A (Table S .Al ) .  
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Figure 5.3 Kepler's ascending and descending scales representing the music of the Earth, Moon, 
and the five planets known to antiquity. 

It was not enough for Kepler to relate data for two adjacent planets to 
musical intervals. He had to then place these intervals into a musical scale 
into order to create the music of the spheres. Kepler made a point of the 
fact that while a pair of planets can be simultaneously at perihelion and 
aphelion and thereby harmonize with each other in their musical tones, a 
single planet must sound its musical tones sequentially as was referred to in 
ancient polyphony as figured song. As a result, Kepler created musical phrases 
encompassing the musical interval of each planet as shown in Figure 5 .3 in 
order to recreate how the planets might have sounded on the first day of 
creation. 

5.4 Results of Kepler's Analysis 

Kepler's first two laws state: 

a) the planets circle the sun in ellipses with the sun at one facus, and 
b) the planets traverse equal angles in equal times as seen from the sun. 

The ratio of the angular traversals between a planet at perihelion to another 
planet at aphelion, 1!!.8pz and 1!!.8al • can be determined from these two laws 
as follows [Kap-H], l / 2 ( JJ/2 1!!.8pz = ( l + ez ) � , 1!!.8at 1 - e1 ) Tpz (S . la) 

file:///l-ex
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1 + el raz 

, (5 . 1b) 

where e i s  the eccentricity of the planet's orbit and rp and ra are the radial 
distances of the planets at perihelion and aphelion. However, Kepler, not 
being privy to Newton's Laws, based his computations on the observational 
data of Brahe. Table 5.Al compares Kepler's results with the results computed 
from Equations (5 . 1 )  and compares both with the value of the appropriate 
musical ratio. 

Just how close were the musical tones to Kepler's ratios ? Two historians 
of Kepler's musical theories have concluded in their excellent treatises that 
his analysis was reasonably accurate [War] , [Ste]. In my analysis, of the 
1 6  tones tabulated by Kepler, five values of the angular ratios were 
within a tolerance of 1 5  cents ( 1 00 cents equals a half-tone) to their 
corresponding tone, taking C as the fundamental. This is roughly the accuracy 
that the equal-tempered scale of the piano approximates the Just scale. Five 
more had a distance between 1 5  and 32  cents from each of its associated 
tone or about the proximity of a Pythagorean comma (about 25 cents) .  Five 
were off by approximately a quarter-tone while one was off by nearly a 
semitone. However, using the theory of probability, it is over 90% certain 
that five tones out of 1 6  are within 1 5  cents of an musical tone purely by 
chance. Kepler was well aware of the discrepancies between planetary ratios 
and tones but nevertheless considered them to be tolerable. However, this 
falls far short of the standards of modern science. 

While Kepler's association of angular ratios with tones are questionable 
based on these results, the data from which he made his deductions are 
remarkably accurate as has been noted by other researchers [Gin]. Using 
modern data and the benefit of Newton's laws of motion, I checked Kepler's 
computations and found them to be close to the exact values computed 
from Equations {5 . 1 ) .  In order to make the computation I assumed that the 
orbits have constant eccentricities which modern astronomy knows to be in 
error. However, the errors in eccentricity have only minor effects on the 
computations, not changing them significantly. Perhaps more seriously, the 
center of gravity of the solar system is not centered about the sun as Kepler 
assumed but is a wandering point over time, and therefore his angular 
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traversals with respect to the sun, do not have quite the significance that 
he attributed to them. 

Despite these inaccuracies, we are struck by how steadfast Kepler was 
in the pursuit of a relationship between planetary ratios and consonant 
musical tones. Kepler considered the discovery of these musical laws to 
be his greatest discovery, and in the ninth chapter of Harmonices Mundi 
he says that "the eccentricities of the individual planets have their origin 
in the concern for harmonies between the planets". Kepler argues that 
the elliptical form is necessary for the intervals to have been generated 
at all since this would have been impossible with circular orbits. The 
world was merely following the creator's will so that "thy Church may 
be built on Earth, as Thou didst erect the heavens themselves out of 
harmonies". In this way he claimed his discoveries appeared to support the 
view that since neither the elliptical forms of the planetary orbits nor the 
musical laws governing these orbits made sense on their own, they must 
have been related through a common source, referred to as the "music of 
the spheres". 

5.5 Bode's Law 

Kepler recognized that there was a vast expanse between the orbits of Mars 
and Jupiter when he once declared, "I have become bolder, and now I place 
a planet between these two". 

Johann Elert Bode was a German astronomer famous for publishing a 
catalogue of 1 7,240 stars and nebulae. He is ironically now more famous for 
re-publicizing, in 1 800, a number series postulated a few years earlier by 
Titius of Wittenburg that approximately predicted the planetary distances 
of the seven planets known at the time. In this series, a number appeared 
between the numbers associated with Mars and Jupiter with no planet 
correlated with it. In 1801 Ceres, the largest asteroid in the asteroid belt, 
was discovered by Guiseppi Piazzi in the gap between Mars and Jupiter, and 
thereafter Titius' number series became known as the Titius-Bode law. 

This law can be illustrated with the aid of a structure invented by 
Buckminster Fuller known as the "j itterbug" [Kap3]. Figure 5.4 shows how 
the j itterbug works. It can be used to transform a point (0 edges) to an 
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(a ) (b) (c) 

(d) (e) (f) 

Figure 5.4 The j itterbug of Buckminster Fuller. 

Table 5. 1  Bode's Law. 

Predicted Actual 
Value Value 

0 + 4 = 4  .4 .39 Mercury 
3 + 4 = 7  .7 .72 Venus 

6 + 4 = 10  1 .0 1 .0 Earth 

1 2  + 4 = 1 6  1 .6  1 .52  Mars 

24 + 4 = 28 2.8 2.8 Ceres 

48 + 4 = 52 5.2 5 .2 Jupiter 
96 + 4 = 100 10.0 9.5 Saturn 

1 92 + 4 = 1 96 1 9.6 1 9.2 Uranus 

equilateral triangle (3 edges) to a tetrahedron (6 edges) to an octahedron 
( 1 2  edges) to a cuboctahedron (24 edges) .  This leads to the series: 0, 6, 1 2 , 
24, which can be continued to 48, 96, 1 92. Adding 4 to each number of 
the sequence as shown in Table 5 . 1  results in Bodes law where the numbers 
represent astronomical units in which the Earth's distance to the sun, 93 
million miles, represents 1 unit. 
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Notice that Ceres was found at 2.8 astronomical units, precisely where 
it was predicted to be by Bode's Law. 

Bode's law has always been controversial since it has no scientific 
mechanism associated with it. To this day we must ask the question as to 
whether its success is coincidental or does it represent an underlying law 
not yet understood? Astronomers l ink it to the disc of dust and gas from 
which the planets formed [Whip] . With the help of Buckminster Fuller, we 
have also found, in the spirit of Kepler, another example of the Platonic 
polyhedra related to the spacing of the planets. 

5.6 A Musical Relationship that Kepler Overlooked 

Near the end of his l ife, Kepler formulated his third law which states: 

The periods of the planets are proportional to the � power 
of their mean radii, i.e. , i = (� r'z where T is the 
period of the planet and r is the mean radius. 

Working backwards from this law, Isaac Newton discovered the universal 
law of gravitation. However, in his search for an harmonic law governing the 
planets, Kepler considered and then rejected ratios between the periods of 
the planets. "We conclude that God the Creator did not wish to introduce 
harmonic proportions into the durations of the planetary years". 

In Harmonices Mundi he states that the periods of the planets are 
directly related to the angular traversals of the planets at perihelion and 
aphelion, but he does not derive this relation, finding it instead by 
interpolating Tycho's observations. Equations 5 . 1  make this relationship 
clear. If the orbits are taken to be circles ( i.e. , eccentricity equals zero in 
Equation 5 . 1 )  and the mean distances to the sun are used, then the ratio 
of the angular traversals between two planets equals the ratio of their periods. 
In this way we are reconsidering a result based on periods that Kepler 
rejected [Kap-H]. 

The ratios between the periods of adjacent planets are given in 
Table 5.2 based on values of the sidereal period listed in Table 5 .A2. The 
sidereal period of a planet is the time it takes to make one revolution in 
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Table 5.2 Comparison of period ratios of the planets with 
tonal ratios where C is taken to be the fundamental. 

Planet Period Tonal Pitch Error 
Ratios Ratio Ratio Class (cents) 

MercuryN en us .3915 2:5 E -37 

Venus/Earth .6152 5:8 A flat -27 

Earth/Mars .53 1 7  8: 1 5  B -5 

Mars/Ceres .3985 2:5 E -6 

Ceres/Jupiter .3979 2:5 E -9 

Jupiter/Saturn .4025 2:5 E 1 1  

its orbits as seen from the stars. I have added the asteroid Ceres to this table 
and taken it to have a period of 4. 72 years, the geometric mean between 
the periods of Mars and Jupiter, and corresponding to the radial distance 
from the sun of Bode's law. Four out of the six ratios are now within 13  
cents of a corresponding tone from the diatonic scale (C, D, E, F, G,  A ,  B )  
taking C as the fundamental tone. 

Notice that the ratio of the period of Venus to Earth is approximately 
5:8 (G sharp) although too small by 27 cents. But it had long been accepted 
in the ancient world that Venus makes five closest approaches to the Earth 
for each eight revolutions about its orbit as shown in Figure 5 .5 which 
accounts for the period ratio of 5:8. 

The ratios of Mars to Earth gives a musical ratio of 8: 1 5  (B) while the 
next three ratios are close to 2:5 (E in the next octave) .  Today's celestial 
mechanics experts attribute "the great inequalities" between Jupiter and 
Saturn as due to the 2:5 relationship in the periods [Encyclopedia Brittanica]. 
Furthermore, astronomers and space scientists know that Mars makes its 
closest approaches mostly in 15-year intervals. Only the ratio between 
Mercury and Venus deviates by an unacceptable amount. Using the law of 
probability, I and astronomer Gerald S. Hawkins have determined that, 
assuming that period ratios are randomly distributed, there is only a 0.5% 
chance of the period ratios approximating the diatonic tones by accident to 
the accuracy that we have found. 
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Figure 5.5 Venus makes five closest approaches to Earth in eight years. 

It has recently been reported that the star, Gliese 876, 1 5  light years 
from the Earth has a pair of planets with orbital periods of 6 1  and 30 days, 
close to an octave ratio [Mal]. A discovery reported at the 2002 meeting 
of the American Astronomical Society indicates that 10-15% of the small 
objects in the Kuiper belt beyond Pluto known as Plutios are tuned to the 
periods of 2 : 1  [Hol-Der] , [Mal]. Also the orbital periods of the adjacent 
moons of Saturn and Jupiter have close to octave ratios. 

Can these have been the harmonic intervals that Kepler sought? 
Since he already suspected the existence of the missing planet Ceres, he 
could have gone one step further and computed the geometric mean 4. 72. 
Only adjacent planets are correlated to the musical tones, and an accurate 
musical scale involving all of the planets cannot be found [Gin]. If 
Kepler had narrowed his sights to pairs of planets, then he would have 
found his music. Moreover, modem theories of dynamical systems have 
taught us to expect correlations between frequencies of revolution of 
gravitating bodies under the direct influence of each other's gravitating 
fields. For example, the moon shows us only one face since its rotation 
about its own axis matches the rotation about the earth. (see Chapter 25) .  
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Pairs of gravitating bodies such as the asteroids or orbiting particles 
around Saturn tend to create gaps in which gravitating bodies are 
repelled (see Section 1 4.6). However, there is yet no theory to explain 
these dynamics. 

5. 7 Conclusion 

Scientists of the caliber of Kepler and Newton had a firm belief that the 
universe expressed a certain harmony, and that they were following 
representatives of a line of inquiry that went back to antiquity. Despite the 
fact that Kepler was using Tycho Brahe's data obtained before 1 600 without 
the aid of a telescope, the difference between Kepler's observed values and 
our values computed with idealized equations and modem data amounted, 
in 14  out of 1 6  cases, in an error of less than 1 8  cents and were, in several 
cases, in nearly exact agreement. If Kepler had used adjacent planets and 
focused on periods he would have found the "music". 

In Chapters 1 4  and 25 of this book, we shall see that, in modem 
terms, there is reason to expect that natural resonances, be they of 
quantum phenomena, spacing of the asteroids and the rings of Saturn, or 
positioning of leaves in a plant, are related to the ratios of small whole 
numbers. 

Appendix 5.A Kepler's Ratios 

Table 5 .A1 lists musical ratios (column 4 ). The deviations of the theoretical 
and the observed ratios from the musical ratios in units of cents are listed 
in columns 5 and 6 while the deviation of Kepler's ratio and the theoretical 
values from each other are listed in column 7. The letters in column 1 
correspond to angular values of the various planets at aphelion and 
perihelion, i.e., Planet (M:1a, Ll8p) where Saturn (a,b ) ; Jupiter (c,d); Mars 
(e,f); Earth (g,h); Venus ( i,k); and Mercury ( l,m). 

The data for mean eccentricity, perihelion, and aphelion radii of the 
planets are listed in Table 5 .A2. 
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Table 5.Al Comparison of theoretical and computed values of Kepler's musical ratios of 
angular traversal for adjacent planets (C is taken to be the fundamental). 

Computed Observed Musical Comp. Obs. Comp.-Kep. 

Ratio Ratio Tone Error Error 
(cents) (cents) (cents) 

a:b .8000 .7562 4:5 (E) 0 -32 32  

a:d .3272 .3272 1 :3 (G) -32 -32 0 

c:d .8253 .8180 5:6(E flat) -20 -32 1 2  

b:c .4963 .5000 1 :2 (C) -13 0 -13  

c:f . 1 1 89 . 1 1 83 1 :8(C) -86 -95 -9 

e:f .6872 .6900 2:3 (G) 53 60 -7 

d:e .2099 .2097 5:24(E flat) 1 3  1 2  

g:h .4282 .4280 5 : 12(E flat) 47 46 

f:g .9335 .9307 15 : 16(D flat) -4 -1  -3 

f:g .6661 .6664 2:3 (G) -2 -1 -1 

g:k .5873 .5844 3:5(A) -37 -47 1 0  

i:k .9867 .97 1 5  24:25(C sharp) 26 2 1  5 

h:i .6444 .6464 5:8(A flat) 53 58 -5 

i:m .2492 .2470 1 :4(C) -5 -21 1 6  

l:m .4343 .4270 5 : 12(E flat) 7 1  45 26 

k:l .5889 .5952 3:5 (A) -32 -14 -18 

Table 5.A2 Planetary data. 

Planet emean rp (km) ra (km) Sidereal Angular 
Period Traversal 
(yrs) Harm. Mundi 

(sec. of arc) 
aphel. perihel. 

Saturn .05564 1347.6 1 506.4 29.4707 106 135 

Jupiter .04844 740.6 816.0 1 1 .8628 270 330 

Mars .09346 206.6 249.2 1 .8809 1 5 74 2281 

Earth .0167 1 147. 1  1 52 . 1  1 3423 3678 

Venus .006470 107.5 108.9 .61520 5810 5857 

Mercury .2055 46.0 69.8 .24085 9840 23040 
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Tangrams and Amish Quilts 

The artist is like Sunday's child; only he sees spirits. 
But after he has told of their appearing to him everybody sees them. 

Goethe 

6. 1 Introduction 

While driving with my family on a vacation in Lancaster County, the home 
of the Pennsylvania Dutch, I began to make plans for my course on the 
Mathematics of Design. I wanted to find a way of l inking ideas from the the 
history of design to the world around me. 

I had just been reading Secrets of Ancient Geometry by Tons Brunes [Bru] 
in which he analyzes an enigmatic eight-pointed star that will be the subject 
of Chapter 8 (see Figure 8 .1  ) . He describes his theory that this star, along 
with the subdivision of a square by a geometrical construction that he calls 
the "sacred cut", formed the basis of temple construction in ancient times. 
To construct the sacred cut of one side of a square with compass and straight 
edge, place the compass point at a comer of the square and draw an 
arc through the center of the square until it cuts the side as shown in 
Figure 6. 1 .  This arc cuts the side of the square to a length Jz as large. 
Four such cuts determine the vertices of a regular octagon as shown in 
Figure 6.2. 

Kim Williams, an architect living near Florence, also described to me 
how she had found the system related to Brunes's sacred-cut geometry 
embedded in the proportions of the pavements of the baptistry of the church 
of San Giovanni which itself is shaped l ike a regular octagon [Willl ] .  

1 25 
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1 

Figure 6.1 The sacred cut. 

, - - - - - --------� - - - - - ,  
I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
L - - - - - -"'--------JL - - - - - .J 

Figure 6.2 Construction of a regular octagon from four sacred cuts. 
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The pavements themselves had many star octagonal designs engraved 
in them. The star octagon, an ecclesiastical emblem, signifies resurrection. 
In medieval number symbolism, eight signified cosmic equilibrium and 
immortality. 

6.2 Tangrams 

Recently, I had been showing my son the fascinating tangram puzzle in 
which thousands of pictograms, such as the one shown in Figure 6.3a, are 
created from the dissection of a square into the seven pieces shown in 
Figure 6.3b. A tangram set can be created from a single square piece of 
paper by simply folding and cutting. The pieces consist of a 45-degree right 
triangle at three different scales along with the square and diamond formed 
by juxtaposing two 45-degree right triangles as shown in Figure 6.4. The 
side of the larger triangle is equal in length to the hypotenuse of the next 
smaller. Each pictogram must be formed from each of the seven pieces with 
no repeats and no overlaps. Enlarge the pieces, cut them out, and try your 
hand at constructing the pictogram shown in Figure 6.3b. Exactly 13  convex 
polygons (polygons with no indentations) can be constructed from the 
tangram set including one rectangle (other than a square) and one triangle 
(other than an isosceles right triangle) .  However, it is enough of a challenge 
to reconstruct the square. 

(a) (b) 

Figure 6.3 (a) The tangram set; (b) a pictogram constructed with the tangram set. 
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6.3 Amish Quilts 

Figure 6.4 The 45 degree right triangle is the 
geometric basis of the tangram set. 

On our vacation to Pennsylvania Dutch country we were able to explore 
the countryside, visit working farms, and delve briefly into the rich history 
of the people. The Amish and Mennonites settled in Pennsylvania during 
the eighteenth and nineteenth centuries as refugees from religious persecution 
in Germany and found a haven of freedom and rich farm lands in Lancaster 
county. While the Mennonites are devoutly religious and live simple lives 
devoid of materialistic pursuits, they do enjoy a few of the comforts of 
modem society. The Amish, however, attempt to insulate themselves as 
much as possible from outside influences and live a plain existence in 
which they farm without electricity, drive horsedrawn carriages, and wear 
unostentatious clothing. Amish women live extremely proscribed lives caring 
for the house and children. One of the few outlets for their creativity is the 
practice of quilt making [Ben]. 

The oldest known quilts date to about 1 850. However quilting designs 
have changed only slightly through the years. Geometric patterns consisting 
of squares, star octagons, diamonds and 45-degree right triangles are used in 
simple designs. While the geometric patterns are the manifest content of 
the quilts the fabric is stitched with a variety of subtle patterns such as 
tulips, feathers, wreaths, pineapples, and stars. 

I purchased a quilt with the design shown in Figure 6.5a. I was amazed 
to see that it consisted almost entirely of pieces from the tangram set. 



(a) 

(c) 
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(b) 

Figure 6.5 (a) A traditional Amish quilt 
illustrating the tangram pieces; (b) an Amish 
quilt made up of "Amish diamonds"; (c) the 
Amish "nine-square" pattern. 

You can see that it has 45 degrees right triangles at three different scales, 
squares, and diamonds that have the same internal angles as the tangram 
diamond, namely 45 degrees and 135  degrees. However, the Amish quilt 
diamonds differ from the Tangram diamonds by having all equal edge lengths. 
The ratio ofthe diagonals of the Amish diamond is 1 + .J2 : 1 , an important 
number that will be considered in greater depth in the next chapter. This 
is identical to the ratio of line segments into which the sacred cut divides 
the edge of a square. I shall refer to these as Amish diamonds. 

I also purchased a larger quilt which utilizes the pattern of the star 
octagon shown in Figure 6.5b. It is made of the tangram diamonds in 
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rhythmically alternating colors so that it appears to be pulsating energy into 
a room. Finally I purchased two potholders in the basic Amish nine-square 
pattern (Figure 6.5c). I was soon to discover that the nine-square was 
intimately related to Brunes's star figure (see Section 8.3 ) . At last I had the 
connections that would give unity and substance to my course. 

I shall now summarize some of the geometric connections related to 
these personal discoveries, as I reported them to my class. 

6.4 Zonogons 

A regular octagon can be tiled with two squares and four Amish diamonds 
in two different ways, as shown in Figure 6.6 ( if the tangram diamonds are 
used, the octagon will not be regular). 

This is an example of a more general result that says an n-zonogon can 
be tiled by n(;-1) parallelograms in two distinct ways [Kap3] , e.g. when 
n = 4 by 4 X 1 = 6 parallelograms. An n-zonogon is a parallelogram with 
n pairs of parallel and congruent edges, i.e., the edges of its parallelogram 
tiling are oriented in n vector directions as shown in Figure 6.6 for the 
4-zonogon with its four vector directions. The central angle of the regular 
octagon is represented by () = 3�0 = 45 degrees in Figure 6. 7a, while the two 
different types of two parallelogram derived from the 4-zonogon are shown 
in Figure 6. 7b to have angles of 1 (), 3 () and 2 8, 2 8. We are using this 
notation to represent the two distinct angles of a parallelogram (the other 
two angles are repeated). Notice that the angles add up to 48, or 180 
degrees, whereas the angles surrounding each vertex in Figure 6.6 sum to 
88 [Lal3] .  This can easily be generalized to n-zonogons and their derived 
parallelograms [Kap3] . 

A key property of n-zonogons is that their edges line up in a series of 
n sets of parallel edges or zones. The edges of each zone are oriented in the 
direction of one of the n vectors that define the zonogon. You can observe 
this in Figure 6.6 for the 4-zonogon. If the length of one of the vectors is 
shrunk to zero, then one of the zones is eliminated and the n-zonogon 
collapses to a {n- 1 )-zonogon. Alternatively, each of the n vectors can be 
expanded or contracted, with the effect that the shape of the zonogon is 
distorted without altering the internal angles of its parallelograms. 
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Figure 6.6 A regular octagon tiled with two squares and four Amish diamonds i n  two ways. 

(a) 

D 
(b) 

Figure 6. 7 (a)  The parallelograms defined by a 4-zonogon; (b) the two angles of the 
parallelograms add to 4. 
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(a) (b) 

(c) (d) 

Figure 6.8 The rhombic dodecahedron as the structure of the beehive. 

6.5 Zonohedra 

The two sets of parallelograms that tile the 4-zonogon in Figure 6.6 can 
be seen to be a schematic drawing of a twelve-faced, space-filling polyhedron 
known as a rhombic dodecahedron (RD) [Kap3] . This polyhedron is 
representative of a class of polyhedra with opposite faces parallel and 
congruent known as zonohedra. If the two sets of three-connected edges are 
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removed from this figure it is easy to see that it represents an hexagonal 
prism. In fact if all the faces of the RD are taken to be rhombuses 
with diagonals in the ratio J2: 1 the polyhedron that results is precisely 
the form that caps the hexagonal prisms that make up the structure of 
the beehive (see Figure 6.8). It also represents the configuration of 
the garnet crystal. Here are the links to the natural world that I was looking 
for. Similar to zonogons, n-zonohedra are defined by n zones of parallel 
edges. Likewise, if the zonohedron is made of linear rods, one zone of 
parallel rods can be eliminated and the sticks reconnected, the result 
being a zonohedron of one order less [Kap3]. This concept was cleverly 
used by Steve Baer [Bool], [Bae] to create zonogon shaped houses which 
could be easily renovated by changing their size and shape in a manner 
forbidden by geodesic domes. Change a single edge of a geodesic dome and 
all edges must change size accordingly. However, transformations of 
zonohedra can be limited to one zone at a time. 

6.6 N-Dimensional Cubes 

Just as the n-zonogon can be subdivided into parallelograms, an n-zonohedron 
can be subdivided into two interlocking sets of, 

C(n,3) = n(n- l�(n - 2) (6. 1 )  

parallelopipeds where C(n,3 ) is the number of ways one can choose three 
objects from a group of n where order is not important. If this is done, then 
n edges are incident at each vertex giving a projection of an n-dimensional 
cube in 2 or 3 dimensions. But what do we mean by an n-dimensional cube? 

Let's consider a 4-dimensional cube, or tesseract as it is called, the 
boundary of which, in one of its two-dimensional projections, is a 4-zonogon. 
We see it pictured in Figure 6.9 as the fifth in a series of 0,1 ,2,3, and 
4-dimensional cubes. The 0-dimensional cube (see Figure 6.9a) is a point 
with no degrees of freedom. The surface of a !-dimensional cube (line 
segment) is gotten by translating the 0-dimensional cube (point) parallel 
to itself (see Figure 6.9b). One has freedom to move left or right along the 
line. The surface of a 2-dimensional cube (see Figure 6.9c) is gotten by 
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X 
(c) 

0 X 
(d) (e) 

Figure 6.9 Diagrams of 0 , 1 ,2,3, and 4 dimensional cubes. 

translating the line segment parallel to itself to obtain a square. Movement 
is possible on the surface of the square: left-right or up-down. A 3-
dimensional cube (see Figure 6.9d) is obtained by translating a square parallel 
to itself, resulting in a surface with freedom of movement: left-right, up­
down, in-out. Finally, the 4-dimensional cube (see Figure 6.9e) is obtained 
by translating the 3-dimensional cube parallel to itself. You can see that 
now 4 degrees of freedom are possible: left-right (x), up-down (y) ,  in-out 
(z) ,  and movement in the elusive fourth direction (w). Of course Figure 
6.9e is only the projective image of a 4-dimensional cube the same way that 
Figure 6.9c is only a projection of a 3-dimensional cube. In an actual 
4-dimensional cube there would be no intersecting lines, planes, or volumes 
just as a 3-dimensional cube has no crossing edges despite the crossing edges 
that appear in its 2-dimensional projection. 

As predicted by Equation (6. 1 ) , the tesseract has two sets of 4 intersecting 
cells projected into the 4-zonogon. Notice the star octagon in Figure 6.9e, 
reminiscent of my Amish quilt. 
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6. 7 Triangular Grids in Design: An Islamic Quilt Pattern 

A 3-zonogon is shown in Figure 6.10. The two sets of 3 parallelograms that 
tile the hexagon can be seen to be an ordinary cube in perspective. The 
hexagon is also subdivided into a triangular grid. This triangular grid is 
useful as a design tool. 

In Figure 6. 1 1  b we see a triangular grid developed from a family of 
closely packed circles shown in Figure 6. 1 1a and created as shown in 
Appendix 6.A. Repeating patterns can be created by deleting lines from 
Figure 6. 1 1 . Two examples are shown in Figure 6. 1 2, and additional designs 
recreated from a square grid of circles are shown in Appendix 6.A. 

(a) 

Figure 6.10 A 3-zonogon viewed as either a 
3-dimensional cube or as a triangular grid. 

(b) 

Figure 6. 1 1  (a) A triangular grid of closely-packed circles; (b) a triangular grid. 
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(a) (b) 

Figure 6.1 2  Two patterns conforming to (a) the grid of close packed circles; (b) the triangular 
grid. 

Figure 6.13 "Cairo Quilt" by Margit Echols© 
1994, Cotton, 90" x 1 1  0", machine pieced, hand 
quilted. 

Margit Echols [Ech) has developed geometrical principles suited to the 
particular requirements of the art of quilting. One of her quilts is based on 
an Islamic pattern generated from the triangular grids of Figure 6. 1 la and 
b. Her quilt pattern, illustrated in Figure 6. 13 contains twelve pointed stars. 
Three pairs of bounding edges of the star, when extended, traverse the 
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entire pattern and form a triangular grid. Notice that pentagonal star-like 
figures make a surprise appearance in the final design. 

Echols has the following to say about the art of quilt making: 

"The quiltmaker is faced with tremendous restrictions inherent 
in both the laws of geometry and the technology of patchwork. 
How is it we can bear the time it takes to make a quilt? -
Besides the obvious rewards of accomplishing technical 
challenges, of making colors sing, the tactile sensuality of 
textiles, and the meditative quality of repetitive handwork -
there is the pleasure of problem solving of putting the puzzle 
together, of playing the game, a serious game of a battle against 
chaos which has deep intellectual appeal." 

6.8 Other Zonogons 

For a 5-zonogon, the central angle is (} = 31�0 = 36 degree and the two 
species of parallelogram are 1 (}, 48 and 28, 3(}  (adding up to 5 B) . These 
parallelograms have interesting properties since the ratio of their edge length 
to one of their diagonals is related to the golden mean, a number whose 
value is r = I+[S . These parallelograms will be discussed further in 
Section 20.4 and will arise in Section 25.2 in the context of quasicrystals. 
Designs with these parallelograms, such as the one in Figure 6.14, have 
approximate five-fold symmetry. 

The design possibilities are all the richer for tiling a 6-zonogon. Tiling 
the 6-zonogon by its parallelograms, 1 (}, 5 (}; 2 (}, 4(}; and 3 (}, 3 (} where (} = 

31�0 = 30 degrees, results in perspective diagrams of the rhombic triacontahedron 
(30 parallelogram faces) and the truncated octahedron (with 6 square and 8 
hexagon faces) shown in Figure 6. 15 .  By successively removing zones the 
6-zonohedron (rhombic triacontahedron) collapses to a 5-zonohedron 
(rhombic icosahedron) , then to a 4-zonohedron (rhombic dodecahedron) , 
and finally to a 3-zonohedron (parallelepiped). In the last phase of this 
transformation there are two possible parallelepipeds, type 1 and type 2, 
that are the building blocks for all the other zonohedra derived from the 
6-zonohedron, much as parallelograms are building blocks for zonogons 
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(a) 

Figure 6. 14 A pattern with approximate 
five-fold symmetry made up of the two 
paral lelograms of the 5-zonogon from the 
Mathematics of Design class of Jay Kappraff. 

(b) 

Figure 6.1 5  (a) The truncated octahedron; (b) the rhombic triacontahedron. 

(see Figure 6. 1 6) .  All faces of this family of zonohedra are congruent 
rhombuses and have diagonals in the ratio, 'l' : 1 and for this reason they 
are called golden iso-zonohedra [Miyazaki 1 980] . Each zonohedron can be 
tiled by the number of parallelopipeds given by Equation (6. 1 ). For example, 
the rhombic dodecahedron with n = 4 is tiled by 4 parallelopipeds, 2 of type 
1 and 2 of type 2 as shown in Figure 6 .1 7 .  The rhombic triacontahedron, 
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(a) (b) 

Figure 6.16 A golden parallelopiped of type 1 and type 2. 

Figure 6.17  A rhombic dodecahedron tiled by by two golden parallelopipeds of type 1 and 
two parallelopipeds of type 2. 

shown in Figure 6.18, with n = 6, is tiled by 20 parallelopipeds, 10 of type 
1 and 10 of type 2. 

The 6-zonogon can also be viewed as a distorted 2-dimensional projection 
of a 6-dimensional cube, and as for the 4-zonogon, it too has a star dodecagon 
( 1 2  pointed star) at its center (see Figure 6.19). We also encountered this 
star in Figure 3.4c in connection with tone cycles of musical thirds, fourths, 
fifths, and wholetones. The cover of Connections [Kap3] shows the 
extraordinary result of truncating a 6-dimensional cube at one of its vertices. 
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Figure 6.18  A rhombic triacontahedron tiled 
by golden parallelopipeds. 

Figure 6.1 9  A star dodecagon. 

Figure 6.20 A 60-foot long rhombic triacontahedron sculpture with a quasicrystal interior at 
Denmark's Technical University in Copenhagen by Tony Robbin. 
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Alan Schoen [Schoe] has created a puzzle called Rombix in which 
multicolored tiles which are composites of 8-zonogons are used to create a 
prescribed set of designs. The artist Tony Robbin [Rob] has built a 60-foot 
sculpture, shown in Figure 6.20, based on quasicrystal geometry for the 
three story atrium at Denmark's Technical University in Copenhagen. The 
dome is a rhombic triacontahedron with a quasicrystal interior. 

6.9 Conclusion 

The concept of the zonogon is the key to understanding the system 
of design used by the Amish. It leads to a means of visualizing the 
two-dimensional projection of an important class of three-dimensional 
polyhedra known as zonohedra, and it places an understanding of the nature 
of three-dimensional geometry firmly in the context of higher-dimensional 
geometry. The 4- and 5-zonogons define systems with a repertoire of 
two parallelograms, the first related to .fi and the sacred cut, the second 
related to the golden mean. A system of architectural proportions developed 
by the Le Corbusier, known as the Modular, is based on the golden 
mean [Kap3]. In the next chapter we shall explore the .fi system of 
proportions in greater depth. We shall also see that these two systems 
share a unifying structure with roots in the musical scale. The number of 
parallelograms proliferate for zonogons of a higher order which inhibits 
their usefulness to serve as systems of proportion. 

My visit to the Amish country, examination of the quiltwork ofMargit 
Echols, and the structures of T any Robbin have reinforced my feeling that 
artists, and practitioners of the folk arts have infused their work with patterns 
that share themes of common interest to mathematicians and scientists. 

Appendix 6.A 

6.Al Steps to Creating a Triangular Grid of Circles 

1 .  Begin with a point at the center of a circle of arbitrary radius. 
2. From an arbitrary point on the circumference of this circle draw 

another circle of the same radius through the center of the first circle 
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(a) (b) 

(c) (d) 

Figure 6.Al Creation of a triangular grid of circles. 

(Figure 6.Ala) . This pair of circles is known as the Vesica Pisces. In 
ancient sacred geometry the Vesica had spiritual significance, and 
engravings of Christ were often found within the central region [Kap3]. 
A pair of equilateral triangles can be placed within the central region 
(Figure 6.Alb). 

3 . Where any pair of circles intersect, draw circles of the same radius with 
these points as centers to obtain a set of six circles surrounding a central 
circle, the beginning of a triangle circle grid (Figure 6.Alc) . 

4. If lines are drawn connecting the intersection points, a triangular grid 
results. Four circles create a ten-pointed grid known as the tetractys 
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(Figure 6.Alc) of great significance in Platonic numerology and discussed 
in Sections 3.5 and in the next chapter. 

5. This process can be continued to generate a triangle circle grid covering 
the plane (see Figure 6. l la). 

6.A2 Steps to Creating a Square Circle Grid 

1 .  Begin with a pair of Vesicas generated by three circles (Figure 6.A2a). 
A pair of circles (light lines) are added to create two axes at right angles. 

2. Six additional circles are added to create a circle grid based on a square 
of nine circles (Figure 6.A2b). 

(a)  (b) 

(c) 

Figure 6.A2 A square grid of circles 
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3. This procedure can be continued to generate a complete square circle 
grid. In Appendix lO.A we will show that the sacred cut is subtly 
embedded throughout the square circle grid. 

4. You can create designs related to the square circle grid by drawing lines 
between any pair of defined points. You are also permitted to delete any 
lines or curves. Try recreating the designs shown in Figure 6.A2c. 



7 
Linking Proportion, Architecture, and Music 

The harmony of proportions should be achieved in such a manner that nothing 
could be added, diminished or altered except for the worse. 

Leon Battista Alberti 

7.1  Introduction 

Throughout the history of architecture there has been a quest for a system 
of proportion that would facilitate the technical and aesthetic requirements 
of a design. Such a system would have to ensure a repetition of a few key 
ratios throughout the design, have additive properties that enable the whole 
to equal the sum of its parts, and be computationally tractable - in other 
words, to be adaptable to the architect's technical means. The repetition of 
ratios enables a design to exhibit a sense of unity and harmony. Additive 
properties enable the whole to equal the sum of its parts in a variety of 
different ways, giving the designer flexibility to choose a design that offers 
the greatest aesthetic appeal while satisfying the practical considerations of 
the design. Architects and designers are most comfortable within the realm 
of integers, so any system based on irrational dimensions or incommensurable 
proportions should also be expressible in terms of integers to make it 
computationally acceptable. 

Three systems of architectural proportion that meet these requirements: 
the system of musical proportions used during the Renaissance developed 
by Leon Battista Alberti, a system used during Roman times, and the Modular 
of the twentieth-century architect, Le Corbusier [LeC] . All of these systems 
draw upon identical mathematical notions already present in the system of 

145 
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musical proportions as we shall show in Section 7 .2. While the Roman 
system is based on the irrational numbers .J2 and 8 = 1 + .J2 the Modular 
is based on the golden mean -r = l+[S . Both of these systems can also be 
approximated arbitrarily closely (asymptotically) by integer series, and these 
integer series can be used to implement the system with negligible error 
[Kap6]. I shall demonstrate this for the Roman system since the Modular 
has been adequately covered elsewhere (cf. [LeC] , [Kap3]) . I will also show 
that the basis of the Roman system is a geometrical construction discovered 
in the Renaissance, known as the law of repetition of ratios. The sacred cut 
will be shown to lie at the basis of the Roman system. I shall illustrate, by 
way of Kim Williams' analysis of the Medici Chapel [Will2], that both the 
law of repetition of ratios and the sacred cut are geometric expressions of 
the additive properties of the Roman systems and insure the presence of 
musical proportions in a design. I will conclude with a discussion of Ezra 
Ehrenkrantz' system of modulor coordination based on both musical proportions 
of Alberti and Fibonacci numbers [Ehr]. 

7.2 The Musical Proportions of the Italian Renaissance 

During the Italian Renaissance Leon Battista Alberti and Andreas Palladia 
developed a system of architectural proportion based on proportions inherent 
in the musical scale (cf. [Schol], [Wit]) . This movement was a response to 
the neoPlatonic ideas prevelant at the time. According to Alberti [Wit]: 

"The numbers by which the agreement of sounds affect our 
ears with delight are the very same which please our eyes and 
our minds. We shall therefore borrow all our rules for harmonic 
relations from the musicians to whom this kind of numbers is 
well known and wherein Nature shows herself most excellent 
and complete." 

Alberti modeled his system on the Pythagorean scale based on the octave, 
musical fifth, and fourth. To achieve an octave above the fundamental 
tone, the bridge of a monochord instrument is moved to the midpoint of 
the string, ( i.e., ratio of 1 :2 as shown in Figure 7. 1 ) , and the string is 
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Sliding bar 

Unison Fourth Fifth Octave 

Figure 7.1  A sliding bridge on a monochord divides the string length representing the 
fundamental tone into segments corresponding to musical fifth (2:3 ) , fourth (3:4 ) , and octave 
( 1 :2) .  

plucked. The fifth is obtained by shortening the string by a ratio of 2:3 
while the fourth shortens the string by a ratio of 3:4. 

All musical proportions of the Pythagorean scale (see Section 3.4) can 
be expressed as ratios of powers of the prime numbers 2 and 3. For example, 
the whole tone corresponds to the ratio 8:9. The system of Palladia was 
based on the Just scale (see Section 3.6) which also included the prime 
number 5 [Kap3]. What is of greater relevance is the manner in which a 
system of architectural proportion was built from these scales. The first 
suggestion appears in the lambda figure {see Figure 3.9b) , 

1 

2 3 
4 9 

8 27 

found in Plato's Timaeus and referred to as "world soul." 
Consider the sequence, 
1, 2, 4, 8, 1 6, . . .  
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Next, construct additional integer series made up of the arithmetic means 
of adjacent numbers as shown below, 

Table 7 . 1  Integer sequence of 
Alberti 's system of musical 
proportions. 

Proportions 
1 2 4 8 1 6  . . .  

3 6 1 2  24 . . .  
9 1 8  3 6  . . .  

2 7  5 4  . . .  

I shall refer to this as Nicomachus' table since an identical table of 
numbers appeared in the Arithmetic of Nicomachus of Gerasa (circa 150 
A.D.) (cf. [D'Oo], [Kap14] ) .  

Notice that Plato's lambda appears on the boundary of these series. I t  
is also evident that the ratio of successive terms in the horizontal direction 
is in the octave ratio, 1 :2, while the vertical direction represents the ratio 
2 :3 (musical fifth) and the right-leaning diagonal ( / )  exhibits the ratio 3:4 
(musical fourth). 

The placement of the numbers in Table 7.1 is governed by the three 
means described in Section 4.3. Each number x of these scales is the 
geometric mean of the numbers y and z to its left and right, i.e., x = .JYz .  
By its construction, each number x is the arithmetic mean of the two 
numbers y,z above it, i.e., x = Y; z • Finally each number x is the harmonic 
mean of the two numbers y,z below it, i.e., x = (��) . Alternatively, any 
integer from Table 7 . 1  is either the arithmetic mean of an increasing octave 
or harmonic mean of a decreasing octave. For example, 1 2  is the arithmetic 
mean of the increasing octave, 8: 16, bracing it from above, while it is 
the harmonic mean of the decreasing octave, 1 8:9, bracing it from below 
(see Section 4.3 ). As the result of these relationships, any sequence x,u,v,y 
that includes the arithmetic and harmonic means u,v of its endpoints x,y 
insures a repetition of ratios as illustrated for the sequence 6, 8, 9, 1 2. Here, 
9:6 = 1 2:8 and 8:6 = 1 2:9. 
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2:3 3:4 3 :4 2:3 
� � � �  
6 9 1 2  6 8 1 2  

1 :2 1 :2 

( 7. 1 )  

Musically, it is said that "when the musical fifth is inverted in the octave 
it becomes the musical fourth". All the tones of the Just scale can be 
produced in a similar manner by placing the arithmetic and harmonic 
means in the gaps formed by the intervals of Sequence ( 7. 1 )  and in the 
successive gaps thereby formed (not shown). Architecturally, any relationship 
that incorporates musical proportions insures that key ratios repeat in the 
context of a design. 

Alberti used this system in Table 7. 1 to design his buildings [Alb]. The 
dimensions and subdivisions of the rooms of his buildings had measures 
given by adjacent numbers within the table. Therefore a room could exhibit 
a 4:6 or 6:9 ratio but not 4:9. This insured that ratios of these lengths would 
embody musical ratios. Wittkover [Wit] describes Alberti's use of musical 
proportions in the design of S. Maria Novella and other structures of the 
Renaissance. 

Although the Renaissance system of Alberti succeeded in creating 
harmonic relationships in which key proportions were repeated in a 
design, it did not have the additive properties necessary for a successful 
system. However, a system of proportions used by the Romans and 
the system of proportions developed by Le Corbusier, known as the Modular, 
both conform to the relationships inherent in the system of musical 
proportions depicted in Table 7 . 1  with the advantage of having additive 
properties. 

7.3 The Roman System of Proportions 

The well known integer sequence 

1, 1, 2, 3, 5, 8, 13, 2 1, . . .  (7 .2)  

in which each term is the sum of the preceding two terms possesses is  an 
example of a Fibonacci sequence or F-Sequence. The ratio of successive 
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terms approaches the golden mean r = l+[S in a limiting sense. The 
r-sequence (see Section 20.2) :  

1 1 2 3 . . .  , 2 , - , 1, r, r  , r  , . . .  
'l' 'l' 

is not only a double geometric sequence but also a Fibonacci sequence 
(each term is the sum of the preceding two terms). It is the additive properties 
of this sequence that led Le Corbusier to make it the basis of his Modular 
series of architectural proportions. It can also be shown that the Modular 
conforms to the relations inherent in Alberti's pattern of the musical 
proportions exhibited in Table 7 . 1  [Kap6]. 

Another integer sequence possessing additive properties is 

1, 2, 5, 1 2, 29, 70, . . .  ( 7.3 ) 

known as Pell' s sequence in which twice any term in the sequence 
when added to the previous term gives the next term. Theon of Smyrna, 
a second-century A.D. Platonist philosopher and mathematician first 
presented this sequence in his book The Mathematics Useful for Understanding 
Plato [The). The ratio of successive terms from any Pell sequence such as 
Sequence ( 7 .3 ) ,  

2 5 1 2  29 70 
(7  .4) 

1 ' 2 ' 5 ' 1 2 ' 29 ' ' "  

approaches the irrational number 8 = 1 + Ji , called the silver mean, in a 
limiting sense. We have already seen that the sacred cut (see Section 6.2) 
divides the edge of a square in the ratio 1 : 8. Since the sacred cut is associated 
with the construction of a regular octagon (see Figure 6.2) ,  it is not surprising 
that the diagonals of an octagon divide each other in the ratio 1 : 8  as shown 
in Figure 7 .2. This number is also known as the silver means since it is 
second in importance to the study of dynamical systems (see Chapters 22 
and 25) .  

The 9-sequence 

1 1 2 3 . . .  , -2 , - , 1, 8, 8 , 8 , . . .  
8 8 

( 7.5 ) 

is the only geometric sequence that is also a Pell sequence. 
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Figure 7.2 A star octagon. The diagonals cut each other i n  proportions 1 : 8. 

Table 7.2 The roman system of proportions based 
on 8. 

2J2 2J2 ,-:; ,-:; 2 ,-:; 3 ,-:; 4 ,-:; 
• • •  , -2- ,--,  2v 2, 2ev2 ,  2e v2 ,  2e v2 ,  2e v2 ,  . . .  e e 

2 2 2 3 4 · · · , 2 ,  - , 2, 2e, 2e , 2e , 2e , . . .  e e 
. . .  , If , J2 ,  JZ, eJZ, e2 JZ, e3 JZ, e4 JZ, . . .  e e 

1 1 2 3 4 . . .  , 2 ,  - , l, e, e , e , e , . . . e e 

1 2 n 2 n 3  . . .  , 8 + 2 =8, 1 + 28 =8 ,  u + 28 = u  , . . . (7.6) 

Therefore, a Pell sequence possesses many additive properties which is why 
it was used in ancient Rome as the basis of a system of architectural 
proportions (cf. [Scholl , [Kap3] ,  [Wat-Wl] ,  [Willl ] ) .  

Table 7.2 illustrates the infinite sequences that underlie the Roman 
system of proportions, and it is identical in its mathematical structure to 
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Nicomachus' Table 7 . 1  [Kap1 ] .  Each element in this table is the arithmetic 
mean of the pair above it, e.g., rJ is the arithmetic mean of eJi and 
ezJ2 , 

(7 .7a) 

Also each element is the harmonic mean of the pair below it, e.g., efi 
is the harmonic mean of () and rJ, 

( 7.7b) 

The algebra to carry out these operations can be seen more clearly by 
comparing the 8-sequence in the first three lines of Table 7.2 with the 
discrete version of this sequence. 

2, 4, 10, 24, 58, 140, . . .  

1, 3, 7, 1 7, 41, 99, . .  . (7 .8) 
1, 2, 5, 1 2, 29, 70, . .  . 

Both of these triples of sequences have the Pell's sequence property: 
Cln+Z = 2Cln+l + an and the ratio of successive terms of Sequences ( 7.8) 
approaches () in a limit sense as n ---7 = .  Any algebraic operation that holds 
for the integer sequence also holds for the 8-sequence. This sequence has 
many additive properties, although we list only four fundamental properties 
from which the others can be derived. 

(i) Each Pell sequence has the defining property, 

x,x, x Property 1 :  a +  2b = c, e.g., 1 + 2x2  = 5 and 1 + 28 = 82 , 
a, b, c 
( ii) and (iii) Other additive properties are, 

c d 

x x Property 2 :  a + b = d, e.g., 2 + 5 = 7  and 1 + 8 = 8J2 ,  
X X Property 3 :  a + c = b, e.g., 2 + 3 = 5  and 8J2+8 =8 2 • 
a b 
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( iv) Property 4: Any element is the double of the element two rows 
below it. 

Using these properties, it is an exercise to verify Equations ( 7. 7 ) .  
The integer Sequences ( 7.8) exhibit the same geometric, arithmetic, 
and harmonic mean relationships as Table 7 . 1  in an asymptotic sense. 
Thus each term is the approximate geometric mean of the terms to its right 
and left, e.g., 52 

"" 2 x 1 2. Each term in the Sequence ( 7.8)  is the average 
of the terms above it, e.g., 5 = 3;7 . Each term from Sequence (7 .8)  is 
approximately the harmonic mean of the two terms that below it, e.g., 
3 2 1 2x2x5 20 · h h · · b · · ll = T "" --z:;:s = 7 wtt t e approxtmatwn ecommg asymptottca y 

better for terms further to the right in the sequence. Finally, any term in 
the first sequence divides the interval below it approximately in the ratio 

1 (41-29) 12 1 (} :O, e.g., (70-41) = 29 "" : · 

Also the ratio of any term from Table 7.2 to the one below it equals 
Ji while the ratio of any integer from Sequence (7.8) to the one below 
it approximates J2 with the approximation asymptotically approaching 
J2 in the limit as n � oo. For example, 

1 3 7 1 7  

1 ' 2 '  5 '  1 2
, . . . ( 7.8) 

approaches J2 in a limiting sense. It should be noted that since the sum 
of two integers in any row equals an integer from the row above it, an 
infinite number of rows are needed to insure that this proportional system 
has additive properties. 

D. Watts and C. Watts [Wat-Wl] have studied the ruins of the Garden 
Houses of Ostia, the port city of the Roman Empire, and found that they 
are organized entirely by the proportional system of T able 7.2 or its integer 
approximation, Sequence (7 .8). 

7.4 The Geometry of the Roman System of Proportions 

The algebraic properties of the Roman system of proportion can be made 
understandable by considering the equivalent geometric properties. We find 
that three rectangles of proportions 1 : 1  (square - S) ,  1 :  .fi (square root of 
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a. SR - S =  RR b. RR 

0 ·8 I : 
s I s :RA I 

l I 

S + S + RR = RR l SUBTRACT c. SQUARE S R  

0 
SR 

1--------
SR t ADD 

SQUARE 

RR SR + SR = SR 
d. I I 

SR s SR l SR 
I 
I 

SR + S =  RR SR = SR + SR 

Figure 7.3 The square (S), square root rectangle (SR), and the Roman rectangle (RR) are 
interrelated. 

s 

r r  

- - - - - · - - - - - -

&Q 

8 

oQ 

s 

r r  

- - · · · - - - · - · · · -

Figure 7.4 Subdivision of a square by  four sacred cuts into squares (S) ,  square root rectangles 
(SR), and Roman rectangles (RR). 
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Figure 7.5  Mosaics and paintings in the Garden Houses of  Ostia are in  many cases laid 
out according to the geometry of the sacred cut. This photograph, following the pattern of 
Figure 7.4, shows a floor mosaic found in one of the houses. (By Tom Prentiss, photographed 
by John Moss. Reprinted with permission by Scientific American. ) 

2 rectangle - SR) and 1 :8  (Roman rectangle - RR) form an interrelated 
system. For example, if S is either removed or added to SR, this results in 
RR as Figure 7 .3a illustrates. This is equivalent to Properties 2 and 3 .  The 
relation, 2S + RR = RR, is equivalent to Property 1 (see Figure 7 .3b) . 
Finally, if SR is cut in half it forms two SR at a smaller scale, while two SR 
added together form an enlarged SR (see Figure 7 .3c) corresponding to the 
doubling Property 4. 

The key to understanding the Roman system of proportions is the sacred 
cut shown in Figure 6. 1 .  Four sacred cuts drawn from each of the four 
comers of a square form a regular octagon as shown in Figure 6.2. These 
four sacred cuts also divide the square into four S at the comers, a larger 
central S, two SR, and two RR (see Figure 7.4). The Watts have discovered 
a tapestry preserved from the ruins of the Garden Houses of Ostia organized 
according to the pattern of Figure 7.4 shown in Figure 7.5 . Figure 7.6 shows 
the breakdown of a square of dimensions fi3 X fi3 into 1 6  sub-rectangles with 
lengths and widths from Table 7.2 satisfying, 

(}3 = 1 + 20 + 20 +0.Ji ' 
e3 = e.Ji + 2e + e + e.Ji . ( 7.9) 
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8' 
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I 
Figure 7.6 Subdivision of a square into 16 rectangles from the Roman system of proportions. 

It is another exercise to verify Equations ( 7.9) using Properties 1-4 of the 
Roman system. These rectangles can be juxtaposed in many ways to give 
alternative tiles of the original square. A design by Mark Bak using the 
three species of rectangle, S, SR, and RR at three different scales is shown 
in Figure 7 .6. 

7.5 The Law of Repetition of Ratios 

The computational properties of the Modular and the Pell series are also 
the result of the law of repetition of ratios, well known in the Renaissance 
and revived by Jay Ham bridge as the key to his concept of dynamic symmetry 
(cf. [Ham] , [EdE] ) . To illustrate this law, draw a diagonal to a rectangle and 
intersect it with another diagonal at right angles as shown in Figure 7 .8a. 
This subdivides the original rectangle or unit (U), of proportions a:b, into 
a rectangle referred to as gnomon {G) and a similar unit of proportions (U) 
(see Figure 7 .8b) b:c, i.e., 



Chapter 7 Linking Proportion, Architecture, and Music 1 57  

Figure 7.7 A design illustrating the tiling of a rectangle by  S,  SR, and RR at  three different 
scales. 

u .-----....--___, 

G U 

Figure 7.8 The "law of repetition of ratios" divides a unit rectangle into a gnomon and a 
proportional unit. 
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a b 
= and G + U = U .  (7 . 10) b c 

This has the effect of reproducing ratios in a rectangle just as the insertion 
of arithmetic and harmonic means did within the octave for the musical 
scale (see Sequence ( 7. 1 ) ) .  

This process can be repeated many times to tile the unit with whirling 
gnomons and one additional unit 

as was shown in Figure 2 . 1 1 b where we see that the vertices of the gnomons 
trace a logarithmic spiral. Figure 7 .9 shows how the law of repetition of ratios 
might have been used by Alberti to remodel the facade of S. Maria Novella 
in Florence and an ancient Greek temple. 

In Figure 7 . 10  this procedure is applied to a square root of 2 rectangle 
(SR). We see that the gnomon equals the (SR) ,  and SR is therefore 
subdivided into two identical SR's. However, this construction also possesses 
a second important geometrical relationship well known to ancient 
geometers. Notice the upward and downward pointed triangles in Figure 
7 . 1 0. It can be shown that for any rectangle, the intersection of such triangles 
with the diagonals of the rectangle results in a trisection of the length and 
width of the rectangle (see Figure 7 . 1 1 ) . As a result, the law of repetition 
of ratios not only results in a bisection but also a trisection of SR. Therefore 

-
=-

y 
/ F F P,i � y ;::: F:; I 

I K I v. I 

v I ' 

v ' ' 

l----1 I I ' I� ' 

(a) (b) 

Figure 7.9 Use of the law of repetition of ratios to proportion of (a) a Greek temple, and 
(b) S. Maria Novella in Florence. 
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Figure 7.10 Application of the law of repetition of ratios to an SR rectangle. 

+--------- 1 ---------+-

1 1 1 
-+---- 3 --�...---- 3 __ ____.. ______ 3 -----+ 

Figure 7. 1 1  Trisection of the width of a rectangle. 

SR achieves through the medium of geometry what the Pythagorean scale 
achieves of whole numbers with factors of 2 and 3. The design in Figure 
7 . 1 2 ,  based on two intersecting SR rectangles, [EdE] , captures these 
relationships. In the next section I will show that these twin relationships 
lay at the basis of the architecture of the Medici Chapel as uncovered by 
Kim Williams. 
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Figure 7.12 A design based on two intersecting square root rectangles. 

7.6 Relationship between the Roman System and the System of 

Musical Proportions 

Since the time of the Greeks, there has been a tension in architecture and 
design between the use of commensurate and incommensurate lengths, i.e . ,  
lengths governed by rational or irrational numbers. It was Pythagoras who, 
it is said, first discovered that the ratio of the diagonal to the side of a 
square was incommensurable, i.e., no finite multiple of one equals a multiple 
of the other. On the one hand, incommensurate ratios were distressing 
since they did not fit the model that the Greeks had of number [Kap3] .  
On the other hand, they were easily constructible with compass and 
straightedge and had interesting geometric properties some of which have 
been outlined above. Although incommensurate measurements were equally 
incomprehensible from a number theoretic point of view to architects of 
the Italian Renaissance, Wittkover says: 

"Medieval geometry (with its use of incommensurate ratios 
such as 1 :  fi or 1 :  J5 ) is no more than a veneer that enables 
practitioners to achieve commensurate ratios without much 
ado." 

The architect, K. Williams, believes that one function of the system of 
musical proportions may have been to integrate the Roman system of 
proportions based on the incommensurate ratio 1 :  fi with the commensurate 
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Figure 7.13  Plan of the Medici chapel. The 
proportion of the rectangular spaces are 
indicated over the diagonals of these spaces. 
Photograph of the Medici Chapel. 

ratios at the basis of the musical scale. Williams made these discoveries 
while surveying the Medici Chapel in Florence built by Michelangelo [Will2]. 

The ground plan of the chapel is a simple square with a rectangular 
apse, called a scarsella, added to the north end as shown in Figure 7 . 13 .  The 
sides of the square which form the main space of the chapel measure 1 1 . 7  
meters. The height of the chapel walls measure 1 1 .64 meters, suggesting 
that the main space of the chapel was meant to be a cube. The overall 
perimeter of chapel and apse fit into a fi rectangle. Williams recognized 
that a Ji rectangle is embedded in a cube as the rectangle formed by any 
pair of opposite edges. Thus the volume of the chapel and the shape of the 
ground plan are intimately related. 

A second Ji rectangle is found in the chapel in the ensemble of the 
altar and the scarsella. Williams makes the important point that the altar 
protrudes into the Chapel to the extent that the ratio of the distance 
between the face of the altar and the opposite wall to the width of the 
chapel is 8:9, the ratio of the musical whole tone. Other dimensions within 
the chapel were derived from a combination of application of the law of 
repetition of ratios and the method of trisection illustrated in Figure 7 . 1 1 .  
The method of trisection is itself a means of generating the musical ratios. 
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Figure 7.14 Construction of a door using the method of trisection. From Serlio's first book. 

Figure 7 . 14  illustrates how this construction was used by the 16th century 
architect Serlio to proportion the portal of a church [Witt] . Notice the key 
ratio 1 : 2  (octave) in the proportion of the door and the ratios 2:3 (fifth) 
and 1 :3 (fifth above an octave) in the positioning of the door. 

K. Williams constructs a Ji rectangle with dimensions 27 X 27 Ji as 
shown in Figure 7 . 15 .  Applying the law of repetition of ratios to this 
rectangle, the diagonal BJ bisects the long side while vertex C, the 
intersection point of B] with diagonal AK, is at the trisection point of the 
long side (see Figure 7. 1 1 ) .  As a result of this construction, another .fi 
rectangle is formed with side CD, 1 of 27 or 1 8. This construction is 
repeated to yield a family of Ji rectangles, beginning with ABKL with 
short side 27  and proceeding to 18, 1 2, 8, . . . .  As is evident from Figure 
7 . 1 5 ,  the ascending sequence: 4 ,  6, 8 ,  9, 1 2 , 1 8 ,  2 7  inherent in this 
construction is obtained. These numbers are recognized as being components 
of the musical proportions of Table 7 . 1  derived from Plato's lambda. 
Furthermore, geometric sequences were important to Renaissance architects. 
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Figure 7.15 Derivation of the proportions of the Medici Chapel. Courtesy of K. Williams. 

It was stated by Alberti [Alb]: 

"The geometrical mean is very difficult to find by numbers but 
it is very clear by lines, but of those it is not my business to 
speak here." 

Williams supplies the demonstration that length BC is the geometric means 
of AB and CD, i.e., BC = J27x 1 8 .  In  a similar manner, the zigzag path 
AB, BC CD, DE, EF, FG, GH, . . .  , yields a geometric sequence with common 
ratio 'Ji and another sequence of .J2 rectangles beginning with the rectangle 
with sides BC:CK = 1 :  .J2 .  Choosing a key dimension of the chapel, 3.52 
meters, which is the overall width of the lateral bays from perimeter wall 
to the far edge of the pilaster, and using this as the value for side GK of the 
diagram, Williams found that the other proportional lengths generated in 
Figure 7. 16 corresponded with other dimensions which appear in the chapel. 
For example side EM, calculated at 4.3 1 meters, corresponds to the clear 
width between pilasters of the scarsella, which actually measures 4.33 meters, 
with a deviation of only 0.46%. Making this the long side of a .J2 rectangle, 
its short side, EF, is found to be 3.048, which corresponds to the dimension 
of half of the rectangle mentioned previously as circumscribing the ensemble 
of scarsella and altar, deviating by only 0.9% from the measured dimension 
of 3.02 meters. The altar completely fills the other half of the .J2 rectangle, 
and likewise measures 3 .02 meters. Work by historian Guglielmo De Angelis 
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D'Orssat has revealed proportions in vertical elements of the chapel which, 
like the ground plan dimensions, may be seen in relation to the repeated 
trisection of the .fi rectangle. In a diagrammatic analysis of the portal 
found in each of the lateral bays of the chapel, he points out the ratios 1 :2 ,  
1 :3 ,  and 2 :3 .  He has also found the ratio 1 :2.4, which will be recognized as 
the proportions of the Roman rectangle [D'Or]. This indicates that all the 
elements of the chapel were designed with regard to a comprehensive 
proportional system, and geometric series and musical proportions appear to 
have been the means of unification for all dimensions of the chapel. 

7. 7 Ehrenkrantz' System of Modulor Coordination 

The architect Ezra Ehrenkrantz has created a system of architectural 
proportion that incorporates aspects of Alberti's and Palladio's systems made 
up of lengths factorable by the primes 2 ,  3 ,  and 5,  the factors of all integer 
representations of musical tones from the Just scale, along with the additive 
properties of the Fibonacci sequence [Ehr]. To picture this system requires 
a three dimensional coordinate system as shown in Table 7.3. As a number 
moves from left to right, in the X direction, it doubles in value. As a 
number moves from back to front, in Z direction, the number triples in 
value. The sum of two numbers in the vertical, or Y direction, equals the 
next number in the series. Also notice that the upper edge of Plate 1 and 

Table 7.3 

y z PLATE 3 A B c D E 
9 1 8  36 72 144 1 8  36 72 144 288 27 54 108 216  432 45 90 180 360 720 72 144 288 576 I I52 

PLATE 2 B c D E 
X 8 X 6 1 2  24 48 1 2  24 48 96 1 8  36 72 144 30 60 120 240 48 96 192 384 

PLATE I B D E 
I 2 4 8 16  z 2 4 8 1 6  32 

8 3 6 12  24 48 5 10  20 40 80 y 8 1 6  32 64 128 
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the upper-left comer points of Plates 1 ,  2, and 3 of Table 7.3 recreate 
Plato's lambda. The lambda, along with the Fibonacci sequence 1 ,  2, 3 ,  5, 8 
that comprises the first column of Plate 1 ,  provide the boundary conditions 
upon which all other numbers of Table 7 .3 are generated. The Fibonacci 
sequence is truncated at 8 because the next number of this series 1 3  is a 
prime number other than 2,3 , and 5.  

This system is successful at providing the architect with standard lengths 
that insure many possibilities for the subdivisions of any length that appears 
in Table 7 .4. For lengths up to 144 inches, 35 dimensions are available, 20 
of which are greater than 2 feet. Of course, dimensions which do not appear 
in Table 7.4 such as 99 inches can be created as the sum of elements from 
the table, e.g. , 99 = 27 + 45 + 27. However, compare all the possibilities 

Table 7.4 

Fore Fore 
Intervals Dimensions Intervals Dimensions 

1 2 ft. 144 in. 360 em. 3 ft. 36 in. 90 em. 

1 1 ft. 135 in. 337.5 em. 32 in. 80 em. 

1 28 in. 3 20 em. 30 in. 75 em. 

10 ft. 1 20 in. 300 em. 27 in. 67.5 em. 

9 ft. 108 in. 2 70 em. 2 ft. 24 in. 60 em. 

8 ft. 96 in. 240 em. 20 in. 50 em. 

7 ft. 90 in. 225 em. 18 in. 45 em. 

81 in. 202.5 em. 16 in. 40 em. 

80 in. 200 em 15 in. 37.5 em. 

6 ft. 72 in. 1 80 em. 1 ft. 1 2  in. 30 em. 

64 in. 160 em. 10 in. 25 em. 

5 ft. 60 in. 1 50 em. 9 in. 22.5 em. 

54 in. 13 5 em. 8 in. 20 em. 

4 ft. 48 in. 1 20 em. 6 in. 15 em. 

45 in. 1 12.5 em 5 in. 12.5  em. 

40 in. 1 00 em 4 in. lO em. 

3 in. 7.5 em. 

2 in. 6 em. 

1 in. 2.5 em. 

0 ft. 
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Table 7.5 

96-

48 48 

99- 32 3 2  32 

27 45 27 64 3 2  

36 27 36 56 60 

30 36 30 

24 48 24 

36 24 36 

24 24 24 24 

24 32 

24 45 27 

40 32 24 

for creating 96, a number from the table, with 99 a number not in the table. 
Table 7.5 shows that there are 1 1  possible summations for 96 as compared 
to only two for 99. 

According to Ehrenkrantz, and referring to Table 7.3: 

"This system helps to coordinate dimensions which may come 
from different base modules and therefore be normally 
considered [sic] incompatible. More directly, if one wishes to 
use multiples of 3 inches with those of 4 inches, one can move 
to the right on the X axis from 3 in. and down along the Y axis 
from 4 in. They intersect at 1 2  (Plate 2, Column C) and all 
the numbers below, to the right, or behind 12 are multiples of 
both 3 in. and 4 in., i.e., foot intervals. Multiples of other base 
dimensions may be related in a like manner." 

7.8 Conclusion 

I have discussed a series of relationships inherent in the musical scale well 
known to the Greeks and Roman civilizations. I have shown that they form 
the basis of three successful systems of proportionality ( in addition to the 
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Modular of Le Corbusier not discussed here) :  a system used by Alberti and 
other Renaissance architects, the system of proportions used by the Romans, 
and a System of Modulor Coordination of Ezra Ehrenkrantz. These systems 
insure a repetition of key ratios, and possess properties related to the musical 
scale, while the latter two systems provide for additive properties that enable 
designs to be carried out in which the whole equals the sum of its parts. 
These systems can also be expressed in terms of integers to facilitate their 
use. At the basis of the Modulor and the Roman system of proportion are 
two numbers, the golden and silver means. Chapters 20 through 23 are 
devoted to an extensive exploration of these numbers and to their application 
to the study of dynamical systems. 

Appendix 7 A An Ancient Babylonian Method for Finding the 

Square Root of 2 

Neugebauer and Sack [Neu2] in their book Mathematical Cuneiform Texts 
report on a recursive algorithm that the Babylonians used to compute the 
square root of 2 to great accuracy. The Babylonian algorithm was expressed 
in base 60 numbers. McClain translated this method to base 1 0. I reproduce 
a facsimile of the method, give a recursion formula based on the method, 
and show that it is connected to the square root of 2 sequence derived from 
Pell sequences shown in Equation ( 7.8) .  The method draws upon harmonic 
law and makes use of the fact that Ji represents the tritone located between 
the arithmetic and harmonic means placed in the octave. The method 
converges rapidly and the 3rd iterate already agrees with Ji in five decimal 
places. 

Begin with the octave: 1 2 

Double it: 2 4 

Insert the mean: 2 3 4 

The initial approximation is : 
3 

TI = - 1 .5 
2 

Multiply by 3: 6 9 1 2  

Subtract 1 from 9 
to get harmonic mean: 6 8 9 1 2  (7 .Al ) 
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The 2nd approximation is : 

( 8.5 is the average of 8 and 9) 
Double Sequence (7.A1 ) : 

Insert the mean between 16  and 18: 

Multiply this sequence by 1 7: 

Subtract 1 from 289: 

The 3nd approximation is : 

1 2  

1 2  

204 

16  1 8  24 

1 7  24 

289 408 

204 288 289 408 

288.5 577 

( 7.A2) 

r3 = 
204 

= 
408 

= 1 .4 142 1568 . . .  

665857 
Continuing r4 = 

470832 
= 1 .4142 13562 . .  . 

Motivated by this algorithm the approximations to .fi = 1 .414213562 . .  . 
are generated by the following recursion formulas: 

where, 

for a 1 = 3 and b1 = 2 . 

It can be shown by mathematical induction (not shown) that sequences {a,} 
and {bn} are subsequences of the following pair of Pell sequences: 

Pell's sequence: 1 3 7 1 7  4 1  99 239 577 665857 . . . 
1 2 5 1 2  29 70 169 408 470832 . . .  

Term number: 1 2 3 4 5 6 7 8 16  
Approx. number, n: 1 2 3 4 

Therefore the nth approximation to 
approximation to .J2. 

fi corresponds to the 2n th Pell's 



8 
A Secret of Ancient Geometry 

8.1 Introduction 

To enter a temple constructed wholly of 
invariable geometric proportions is to 

enter an abode of eternal truth. 

Robert Lawlor 

The quality of the work of an architect or designer is determined by how he 
or she comes to grips with the mathematical constraints on space inherent 
in all designs - "what is possible", in contrast with the designer's intention, 
"what ought to be" The history of architecture reflects the history of ideas 
in that "what ought to be" has changed from metaphysical perspectives of 
the natural world to explorations of the individual artist. Additionally, the 
history of technology is reflected in the changes of "what is possible". 

There are two kinds of constraints on space that the architect or designer 
must confront: 

• constraints imposed on a design because of the geometrical properties of 
space. 

• constraints imposed on a design by the designer who creates a geometrical 
foundation or scaffolding as an overlay to the design. The designer's 
choice is based on the context of the design and on the effect that he 
or she wishes to achieve. 

Without constraints, a design is chaotic, irrelevant and lacking in focus. 
Where do the designer's constraints come from? In ancient times they were 
derived either from spiritual contexts or handed down from generation to 
generation by tradition. The results were cathedrals such as Chartres and 

169 
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Hagia Sophia or structures such as the Egyptian Pyramids and the Great 
Temple of Jerusalem or the temples of ancient Greece. 

Modern architecture has replaced spiritual - and tradition-bound 
contexts with the private vision of the designer or architect and substituted 
diversity for tradition. However, the designer is left with few tools to deal 
with such a lack of constraint. After all, what should the designer do when 
each design breaks new ground? In an effort to recover the principles of 
ancient architecture, many researchers have studied the geometric and 
spiritual bases of ancient structures (cf. [Tyn] , [Ghy] , [Ver] , [Wat-W1]) .  

This chapter will discuss the work of Tons Brunes, a Danish engineer, 
who hypothesized a system of ancient geometry that he believed lay at the 
basis of many of the temples of antiquity (cf. [Bru] , [Kap4] , [Kap1 1 ] ) .  It was 
Brunes's belief that there existed until about 1400, a network of temples 
and a brotherhood of priests originating in ancient Egypt which had a 
secret system of geometry. At the basis of Brunes's theory is the eight­
pointed star illustrated in Figure 8. 1 .  Brunes claimed to have seen this star 
on a floor mosaic in a temple ruin in Pompeii where the public is not 
admitted. He tried to photograph it, but was forbidden to do so. I encountered 
this star as the ceiling structure in the entranceway of Antonio Gaudi's 
unfinished cathedral, Sagrada Familia, in Barcelona. From the geometry of 
this star he was able to reconstruct reasonably close facsimiles to the plans 
and elevations of the ruins of ancient temples such as the Pantheon, 
Theseum, Ceres, and the Temple of Poseidon, noting that certain 
intersections coincide with features of the temples [Kap4] . Unfortunately, 
although the examples he uses to illustrate his theories are cleverly rendered, 
there is no historical record to support his claims. As a result his research 

Figure 8.1 The Brunes star. 
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has been met considerable skepticism. Nevertheless, as we shall see, the 
Brunes star expresses a geometry consistent with the ancient architecture, 
folk art, and the musical scale portrayed in the previous chapters. Even 
though it is unlikely to have played the all-pervasive role for temple 
construction that Brunes conjectured, it may well have been one of the 
organizing tools along with others such as the sacred cut (see Section 6.2) 
and the law of repetition of ratios (see Section 7.4) . At any rate, the beauty 
of its geometry is reason enough to study it. 

8.2 The Concept of Measure in Ancient Architecture 

While modem scientific method relies on observation and measurement as 
the primary way to arrive at truth, ancient civilizations used myth and 
metaphor through the medium of poetry, music, and sacred scriptures to 
describe their realities. 

R.A. Schwaller di Lubicz [Schw] felt that the combination of myth and 
symbol conveyed by ancient writings was the only way information about 
the workings of the universe could be conveyed. According to Di Lubicz for 
the ancient Egyptians: 

"Measure was an expression of Knowledge that is to say that 
measure has for them a universal meaning linking the things 
of here below with things Above and not solely an immediate 
practical meaning - quantity is unstable: only function has 
a value durable enough to serve as a basis (for description). 
Thus the Egyptians' unit of measurement was always variable -
measure and proportions were adapted to the purpose and the 
symbolic meaning of the idea to be expressed. (For example) the 
cubit will not necessarily be the same from one temple 
to another, since these temples are in different places and their 
purposes are different." 

Even when standard measures were available, they may have been used 
only as an adjunct to pure geometry in the design of structures. In place of 
numbers to describe a measurement, a kind of applied geometry was 
developed in which lengths were constructed without the need to measure 
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them. All that was needed was a length of rope and a straightedge ( the 
equivalent of our compass and straightedge) .  Methods were then devised to 
subdivide any length into sub-lengths, always by construction. Evidence of 
construction lines have been discovered on the base of the unfinished 
Temple of Sardis in Turkey and also in the courtyard of the Temple of Zeus 
in Jerash in Jordan [WatC]. Artmann [Art] has shown how such methods 
were used to construct the windows of the Gothic cathedrals. The geometry 
needed to build these cathedrals was learned from boiled-down versions of 
the first books of Euclid, known as pseudo-Boethius which highlighted the 
constructive methods while eliminating the proofs of the theorems. The 
knowledge to implement this geometry was taught to the guilds of masons, 
other artisans, and builders and then passed on from generation to generation 
by oral tradition. One can imagine learned constructive techniques based 
on the Brunes star being transmitted by this tradition and applied to the 
construction of sacred structures. 

8.3 The Ancient Geometry of Tons Brunes 

In ancient times it was an important problem to find a way to create a 
square or rectangle with the same area or circumference as a given circle -

squaring the circle Uos], as it was known. Since the circle symbolized the 
celestial sphere while a square or rectangle oriented with its sides 
perpendicular to the compass directions of north, east, south, and west 
symbolized the Earth, the squaring of the circle could be thought to 
symbolically bring heaven down to earth. Brunes demonstrates one way in 
which ancient geometers may have attempted to solve this problem using 
only compass and straightedge (we now know that this cannot be done 
exactly) .  In Figure 8.2 the reference square has a side of 1 unit. Arc AB of 
the sacred cut (see Section 6. 1 )  and the diagonal CD of the half square are 
approximately equal (see Figure 8.2a). In fact, 

.fi AB = n- = 1 . 1 107 
4 

CD = J5 = 1 . 1 1 18 
2 

while 
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r 

(a) (b) (c) 

Figure 8.2 The Brunes star approximately "squares the circle" in circumference: (a) four sacred 
cuts; (b) AB = CD; (c) circle with arc AB approximately equals the perimeter of the square 
with side CD. 

In Figure 8.2c four sacred cuts AB are placed into a square to form a 
circle equal in circumference to the perimeter of a square with edge CD to 
within 0.4%. 

In Figure 8.3a, we see that a circle is drawn that is tangent to an outer 
square ( inscribed circle) and touching the vertices of an inner square 
(circumscribed circle). This square -within-a-square, called an ad-quadratum 
square, was much used in ancient geometry and architecture [WatC]. The area 
of the inner square is obviously half the area of the outer square since the 
smaller square contains eight congruent triangles, whereas the larger square 
contains 1 6. In a sequence of circles and squares inscribed within each 
other, each square is f the area of the preceding. Figure 8.3b shows a 
sequence of ad quadratum squares which are shaded to form a logarithmic 
spiral known as a Baravelle spiral. It is easy to construct, and with color 
makes an interesting design. 

The upward-pointed triangle ABC in Figure 8.4 also has half the area of 
the circumscribing square BCFE. If the downward-pointed triangle DEF is 
constructed, then rectangle HI]K, formed by the vertical lines through the 
intersection points of the upward-and-downwards pointed triangles and the 
circle, has approximately the same area as the circle. It can be determined 
(not shown here) that the width of this rectangle is � of the diameter of 
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(a) (b) (c) 

Figure 8.3 (a) An ad-quadratum square, the area of the inside square is half the area of the outer 
square; (b) geometric series of ad quad squares forming a Baravelle spiral ( logarithmic) (c). 

Figure 8.4 The Brunes star approximately squares the circle in area. 

the circle. Taking the square to have length equal to 1 unit, i.e., the radius 
of the circle equals 1 ,  

Area of circle = "( � J .7854 . . .  , 

4 
Area of rectangle 

5 
.80, 

an error of 1 .8%. 
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In Figure 7. 1 1  we showed that for an arbitrary rectangle of proportion 
a:b the line from a vertex to the center of the opposite side AB cuts 
the diagonal CD at the j- point. We now use this geometrical property to 
describe the structure of the Brunes star. 

Take the circumscribing square and subdivide it by placing perpendicular 
axes within it, as shown in Figure 8.5. This divides the outer square into 
four overlapping half-squares. Place two diagonals into each of the four half 
squares and add the two diagonals of the outer square. Notice that the 
resulting diagram (also shown in Figure 8.6) is the Brunes star. 

Figure 8.5 The construction lines for the Brunes star. 

Figure 8.6 The relationship between the Brunes star and the inscribed circle within a square 
showing how the star divides the square into a nine-square grid. 
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Therefore, this star contains all the information needed to square the 
circle in both circumference and area. Also hidden within the Brunes 
star are numerous 3 ,  4, 5 -right triangles. For example triangle ABC is a 3 ,  
4, 5 -right triangle because, 

1 AQ 1 
tan l C =  QC = 2 . 

Therefore using the trigonometry identity, 

it follows that, 

tan tC 
tan C = 

2 
(1 - tan z lC) , 2 

AB 1 4 
- = tan C = -- = - .  
BC (1 - 1) 3 4 

(8. 1 )  

If the Brunes star with all of its construction lines, depicted in 
Figure 8.5, is placed on each face of a cube, it can be shown that the 
vertices of all the six Archimedean solids and two Platonic solids (cube and 
octahedron) related to the cubic system of symmetry as well as the 
tetrahedron coincide with the points of intersection of the construction 
lines [Kap5], [Lal4] . The Brunes star also succeeds in providing the 
geometrical basis for dividing an arbitrary length into any number of equal 
sublengths without the use of measure. 

8.4 Equipartition of Lengths: A Study in Perspective 

Figure 8.5 contains the construction lines and points with which to subdivide 
lengths into 3 and 4 equal parts without the need of a standard measure, 
i.e., points I and M divide diagonal AP into thirds (see Figure 7 . 1 1 )  while 
H, 0 and L divide QC in quarters. The central cross and the diagonals are 
therefore subdivided by the central irregular octagon GHI]KLMN into four 
and three equal parts in a similar way. Points I ,  K, G, and M then provide 
the points that subdivide the outer square into a 3 X 3 grid of subsquares, 
as shown in Figure 8.6, similar to the Amish nine-square in Figure 6.5c. 
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Figure 8. 7a indicates that the Brunes star can divide a line segment into 
2, 3 ,  4, 5 ,  6, 7, and 8 exactly equal parts using a procedure described in 
Appendix B.A. Notice that the square framing one-quarter of the Brunes 
star has construction lines that can be completed to form a Brunes star at 
a smaller scale. The same is true for each of the squares of the nine-square 
grid. As a result of these and other self-similar properties of the Brunes star, 
it can be shown that line segments can be equipartitioned into any multiple 
of the integers from 2-7 without the use of standard measure, using only 
a stretched rope. Other self-similar objects known as fractals will be discussed 
in Chapter 18 .  

A sacred cut drawn from a vertex of the outer square in Figure 8 .  7b 
defines the level that partitions a line into approximately seven equal parts 
to within 2% error. In Figure 8.7c construction lines are shown to use the 
inscribed circle to partition the line into seven parts, again to within 2% 
error. In this construction, Brunes has shown the square subdivided into 
28 approximately equal rectangles suggestive to Brunes of the 28 days of the 
lunar month (the lunar month is actually between 28 and 29 days) . 

This equipartitioning property of the Brunes star has its roots in another 
geometric construction [Kay] which was first related to me by Michael Porter, 
a Professor of Architecture at Pratt Institute. In Figure 8.8a the outer square of 
the Brunes star has been extended to a double square. The principal diagonals 
of the double square divide the width of the upper square into two equal parts. 
The principal diagonals intersect the two diagonals of the upper square at 
the trisection points of the width. At the same time, the trisected width 
intersects the long side of the double square at the 1 point. Continuing one 
more step, two diagonals of the 1 -rectangle intersect the principal diagonal 
at points which divide the width into four equal parts. This width also divides 
the long side of the double square at the t point. This construction may 
be continued to subdivide a line segment into any number of equal parts as 
is shown in Figure 8.8b up to eight subdivisions. 

As is often the case with mathematics, a diagram set up to demonstrate 
one concept is shown to have a deeper structure. We could also view 
Figures 8.8a and 8.8b as a pair of railroad tracks receding obliquely to the 
horizon line. The diagonal and the right side of the double square play the 
role of the railroad tracks as shown in Figure 8.8c. If the observer is at an 
arbitrary location in the foreground (see the eye) ,  then the distance between 



1 78 Beyond Measure 

(a) (b) 

(c) 

Figure 8.7 The Brunes star equipartitions a line segment into (a) 3, 4, 5, 6, 7 , and 8 equal 
parts; (b) approximate equipartition into 7 parts; (c) Brunes's division of a square into 
approximately 28 equal parts. 
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OBSERVER 

(a) 

r.;...,::-------., p , ... � \ ' � ..... 
' ' ' :::: ..... \ ' .... .... .... \ \ \ 

.... 

' 
\ 

' 
' 

' 
' 

' 
W \ OS 
(c) 

Figure 8.8 (a) Equipartitioning property of the Brunes star seen as a perspective diagram. The 
diagram shows the relationship between apparent width W and receding distance D from an 
observer; (b) extension to eight subdivisions; (c) equipartition seen as a pair of railroad tracks 
receding to the distance. 
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Table 8.1 Relationship between apparent width 
and distance from observer. 

Apparent width (W) 

1 - I 0 - 2 
I 1 1 2 = 2 
I _ I !  3 - 2  
I _ 1 2 
4 - 2 
I I 3 
s = 2 

Receding distance (D) 

0 = logz l 

1 = logz 2 

2 =  logz 4 

3 =  logz 8 

the tracks appears half as great as at the base of the double square at some 
measured distance in the direction of the horizon referred to as a standard 
distance, or IS. At a distance from the observer of 2S the distance between 
the tracks appears to be i as large as the base width. In a similar manner, 
the tracks appear to be t as wide at 3S (not shown). How many standard 
units S make the tracks appear 1 as wide ? To answer this question requires 
us to analyze the pattern in greater depth. 

Table 8. 1 shows the relation between apparent width between the railroad 
tracks W and the receding distance D ( in units of S) towards the horizon 
where the width of the tracks at distance D = 0 is taken to be 1 unit. The 
receding distance is also expressed in terms of logarithms to the base 2. 
The relationship between logarithms and exponentials is described in 
Appendix 3 .A. 

In other words, the relation between D and W in Table 8 . 1  can be 
expressed by the formula: 

1 
D ( in units of S) = logz 

W 
. 

Setting W = 1 in this formula and making use of Equation (3.Al ) , it follows 
that the value of ? is, 

log10 3 
? = logz 3 = -1 --2 = 1 .58S. ogw 



Chapter 8 A Secret of Ancient Geometry 181  

If the left side of the double square in Figure 8.8a is  considered to be a 
monochord, then the bridge positions of 1 , t , i , . . .  correspond to integral 
numbers ( 1 ,  2, 3, . . .  ) of octaves above the fundamental when the bridge 

· · · 1 Th 1 1 1 1 · h . f pos1t10n ts at . e sequence, , 2 ,  3 ,  4 , . . .  , ts an armontc sequence o 
reciprocals (see Section 4.2). Any number from this series is the harmonic 
mean of the ones preceding and following it ( see Equation ( 4. 1 )  ) .  
Appendix 8.A shows how the Brunes star can be generalized to enable the 
harmonic mean of any two lengths to be geometrically constructed. It is 
generated by a projective transformation. This sequence is projectively 
transformed in Appendix 8.B to a sequence of evenly distributed integers, 
1 ,  2, 3, . . .  , by a step measure (see Section 2.5 ) .  The tones generated by either 
the harmonic or integer series correspond to the series of overtones that are 
heard when a violin string is plucked and a sequence of multiples of the 
fundamental frequency is generated, as we described in Section 4.2. In fact, 
if the line segments in Figure 8.7a are considered to be violin strings, the open 
circles are the positions at which a violinist evokes an harmonic tone (up 
to the eighth harmonic) by placing his finger lightly on the string at that 
position and bowing midway between a pair of partition points (see Section 
25. 7) .  So we see, as did Leonardo Da Vinci, that a similar law governs both 
eye and ear [Wit]. 

8.5 The 3, 4, 5-Triangle in Sacred Geometry and Architecture 

8.5 .1  Construction of the Brunes Star from 3, 4, 5-triangles 

I have shown in Section 8.3 that triangle ABC in Figure 8.5 is a 3 ,  4, 
5 -right triangle. The 3, 4, 5 -right triangle was called the Egyptian triangle 
by Vitruvius, the architect of the Emperor Augustus, and was used in the 
construction of the pyramid of Cheops ( cf. [Ver] , [Kap3]) . Plutarch described 
this triangle as the symbol of the Egyptian trinity, associated with the three 
significant Egyptian deities [Ver]: 

3 H Osiris, 
4 H Isis, 
5 H Horus. 
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• • • • • • 

3 

(a) 

(b) 

4 
(c) 

• • 

5 

• • • • 

Figure 8.9 (a) Representation of the 1 2  seasons of the Zodiac by a knotted rope; (b) the rope 
is cut open to a straight line; (c) the line is bent into a 3, 4, 5 -right triangle. 

The key to understanding the geometry of the Brunes star lies in its 
construction. But how did ancient architects construct this star diagram? This 
diagram is easy to construct if one begins with a square, but it is not an easy 
matter to construct a large square if one has only a length of rope and some 
stakes to work with. However the entire diagram can equally well be 
constructed beginning with the 3, 4, 5 -right triangle. The 3, 4, 5 -right 
triangle can be constructed from a loop of rope with 1 2  knots, as shown in 
Figure 8.9. The 1 2  sectors of the circle shown in Figure 8.9 can also represent 
the 1 2  regions of the zodiac visited by the sun during the course of the year, 
as viewed from a geocentric standpoint. If we regard the 1 2  sectors of the 
circle as tones of the equal-tempered chromatic scale, we see in Figure 8.1 Oa 
that a subdivision of the tonal circle into 3 ,  4, and 5 semitones gives rise 
to the tones A, C, E of the musical A minor triad [Ebe]. 
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E purple 
net8 • hypot8 

(a) (b) 

Figure 8. 1 0  (a) The 1 2  sectors of a tonal circle viewed as the tones of a minor triad; 
(b) tonal circle related to the color spectrum. 

I have created a videotape of a group of students constructing this star 
on an open field using four lengths of 50-foot clotheslines anchored by 
camping stakes [Kap5] . To construct the Brunes star, begin with four lengths 
of rope each length divided into 1 2  equal sections by 1 2  knots as shown in 
Figure 8. 1 la. Although the rope is shown stretched out in a straight line, 
the ends are connected so that it forms a loop. Four such loops: ADBGCA 
(see Figure 8. 1 la) ,  F]DBEF, IBG]HI and LGJDKL are stretched into four 
3 ,  4, 5 -right triangles, each providing one vertex of the outer square of 
Figure 8. l lb.The right angles of these 3 ,  4, 5 -triangles are located at the 
vertices of the inner square DBG]. 

We have succeeded in constructing the outer square AILF along with the 
midpoints of its sides HKEC. Now that the outer square has been formed, 
we can stand back and observe the harmony of this figure. In order to better 
appreciate its geometry, we must make a brief digression and consider the 
geometry of the 3 ,  4, 5 -right triangle. 

8.5.2 The 3 ,  4, 5 -triangle and its musical proportions 

Let the 3 ,  4, 5 -right triangle ABC in Figure 8. 1 2  have lengths in the ratio: 

(8.2) 
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6ABC�------------------�----��----�----� A D B G C A 
(a) 

(b) 

Figure 8. 1 1  (a) Subdivision of line segment ADBGCA to construct one of the four 3 ,  4, 

5 -right triangles that make up a Brunes star as shown in (b). Lengths of the line segments 
are shown. 

B 

Figure 8.12 The geometry of a 3, 4, 5 -right triangle. 
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It follows from trigonometry that the angle bisector of angle A cuts the 
opposite side Lz in a length, a = 1 , while the angle bisector of angle 
B cuts its opposite side L1 in b = �2 • In other words, 

A 1 B 1 
tan - = - and tan - = - . 

2 2 2 3 
(8.3) 

These two fractions have special significance in terms of the Pythagorean 
musical scale. In fact they represent the four tones: 

1 : 1 , 1 : 2 ,  1 : 3 , 2 : 3 

the unison, octave, and fifth above an octave, and the musical fifth. These 
ratios were displayed in proportions of the door constructed by the 16th 
century Renaissance architect Serlio shown in Figure 7 . 14. 

Making use of Equations ( 8.2) and ( 8.3 ) ,  it follows that: 

2a : 3b : c = 3 : 4 : 5 .  

From Equation ( 8.4) it follows that: 

a 9 
= 

b 8 

(8.4) 

(8.5 ) 

(the ratio of a whole tone in the Pythagorean scale [see Section 3.4] ) .  Using 
the Pythagorean theorem: 

With some algebra 

Using Equation (8.5 ) ,  

(8.6) 

Let a = 9 in which case it follows from Equations (8.5) and (8.6) that b = 8, 
c = 30. So from Equation (8.4), triangle ABC has proportions: 

1 8 : 24 : 30 .  
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So our ancient geometer has now subdivided his rope into 1 8  + 24 + 
30 = 72 units. The number 72 has great significance in ancient geometry. 
Its factors are arranged in Table 8.2: 

Table 8.2 English measures based on 
human scale and Plato's World Soul. 

co 2 CD 8 

3 6 @] 24 

0 1 8  � [ill 

Thus, Plato's "world soul" (see Sections 4.5 and 8.2) has made another 
appearance: 

1 
3 2 

9 4 
27 8 

Section 7 .2 demonstrates how the Pythagorean musical scale was derived 
from this series. The boxed numbers in Table 8.2 also correspond to English 
measures based on human scale, namely, the inch, hand (4 inches) ,  foot 
( 1 2  inches) ,  span (9 inches) ,  yard (36 inches) and fathom (72 inches). 
Without a standard ruler, our geometer could call upon human scale as a 
kind of personal scale of measure. 

8.5.3 The geometry of the Brunes star 

From Equation (8. 1 )  it follows that triangle ABC is a 3, 4, 5 -right triangle. 
All other right triangles in Figure 8.5 are either 3 ,  4, 5 -right triangles or 
fragments of a 3, 4, 5 -triangle obtained by bisecting its acute angles. 
(Compare this with the eight-pointed star of Figure lO.Alh which creates 
numerous 45 degree right triangles within a circle. )  

In  Figure 8 . 1 1 b the dimensions of all the sub lengths are indicated. These 
may be gotten from Figure 8. 1 1a by assigning each segment of the string a 
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length of six units. The properties of 3 ,  4, 5 -triangles given by Equation (8. 1 )  
can also be used to verify these lengths. 

Figure 8. 1 1b shows the star diagram to have 3, 4, 5 -right triangles at 
four different scales. Referring to vertex labels of Figure 8.5 , 

ABC: 1 8 : 24 : 30; 
AD]: 9 : 12 : 15 ;  

QDG: 6 : 8 : 10; 
DHI: 3 :  4 :  5 .  

So we see that the star diagram is entirely harmonized by the 3,  4, 5 -right 
triangle. 

As we previously mentioned, Brunes used these principles of geometry to 
show how many of the structures of antiquity might have been proportioned. 
He subsumed the principles of this geometry into a series of 2 1  diagrams (not 
shown) related to the star diagram and the sacred cut [Kap4] . He claims that 
each step in the creation of a plan for one of the ancient structures follows 
one or another of these diagrams. Although Brunes has obtained close fits 
between key lines of the elevation and plan (not shown) of these structures, 
his constructions require an initial reference circle the choice of which is 
quite arbitrary. Despite the close fits between Brunes's diagrams and actual 
temples, one never knows the degree to which they have been forced by his 
imagination. In my opinion, it is unlikely that this method was actually used 
as described by Brunes. Nevertheless, the simplicity and harmony of Brunes's 
diagrams make it plausible that they could have been used in some 
unspecified manner as a tool for temple design. 

8.6 What Pleases the Ear Should Please the Eye 

We have seen that 3, 4, 5 -triangles pervade the Brunes star. However, not 
all 3 ,  4, 5 -relationships refer to right triangles. We have seen in Section 3.7 
that 3 ,  4, 5 -relationships between string lengths play a major role in the 
structure of the musical scale and make a surprise appearance in the structure 
of the color spectrum of light (see Section 3.9) which could be thought of 
as a kind of "musical scale" for the eye. The association between tones and 
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number ratios led the architects of the Italian Renaissance to build a system 
of architectural proportions based on the musical scale (see Chapter 7) . 

Eberhart [Ebe] has made the observation that the wavelengths of visible 
light occur over a range between 380 mJ.L (millimicrons; mJ.L = 10-7 em) in 
the ultraviolet range to about twice that amount in the infrared, or a visual 
"octave". He states, 

"When the colors of visible light are spread out in such a way 
that equal differences in wavelength take equal amounts of 
space, it stands out that blue and yellow occupy relatively narrow 
bands while violet, green, and red are broad (see Figure 8. 13 ) .  
Observe that the distance from the ultraviolet threshold to blue 
to yellow to the infrared threshold is very closely 4:3:5 of that 
spectral octave, i.e., 383 .333 . . .  X 2411 2 = 483 mJ.L (mid blue) 
and 383.333 . . . X 27/12 = 5 74.333 . . . mJ.L (mid yellow). This 
means that if we subjectively identify the two thresholds of 
ultraviolet and infrared, as is commonly done in making color 
wheels, calling both extremes simply purple, then the narrow 

700 
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RED 

YELLOW 
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!ILUE 

VIOLET 

UL TRA-VJOLET 

Figure 8.13 The color spectrum illustrating the 
frequency ratios between purple: yellow: blue 
as 3:4:5. Courtesy of Stephen Eberhart. 
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bands of blue and yellow have approximate centers lying at 
points on the circle that divide the circle into segments in 3, 
4, 5 -ratios as for the A minor triad (see Figure 8. 10b)." 

Eberhart's observation adds some additional substance to the Renaissance 
credo that what pleases the ear also pleases the eye. 

8. 7 Conclusion 

According to Plato, the nature of things and the structure of the universe 
lay in the study of music, astronomy, geometry and numbers , the so-called 
quadrivium. Built into sacred structures would be not only a coherent 
geometrical order but also a sense of the cosmic order in terms of the cycles 
of the sun and the moon and the harmonies of the musical scale. The Brunes 
star with its ability to square the circle, its equipartitioning properties, its 
relationship to 3, 4, 5 -triangles, and its relationship to Archimedean and 
Platonic solids makes it a plausible tool for the builders of significant ancient 
structures. 

In Chapter 10, I will show that the Brunes star is a natural tool for Ben 
Nicholson's reconstruction of one of the pavements of the Laurentian Library 
in Florence. In Chapter 1 1 , I will show that the geometric mode of thinking 
inherent in the Brunes star was not merely the modus operandi of advanced 
urban societies of the ancient world but, it may have served equally well for 
the civilization of farmers that settled in Megalithic Britain. Their sacred 
spaces may also have been expressions of the spirit of the quadrivium. 

In Chapter 20, I will show that the Brunes star serves as a natural 
setting for expression of the golden mean. In the next chapter I illustrate 
a Brunes star whose edges are composed of hyperbolic arcs related to the 
golden and silver means introduced in Chapter 7. 

Appendix S.A Harmonic Means 

The sequence 
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I I -l-3 4 .) 1 
Figure 8.Al Geometric construction of an harmonic series. 

0 
X N N 

l + x = N + D x = D 

a + N x + 1 
--a = -�-

0 

Figure 8.A2 Koepp's construction of the harmonic mean of two lengths. 

corresponds to the undertone series introduced in Section 4.2. Each number 
of this sequence is the harmonic mean of the two numbers that brace it, 
e.g. , j- is the harmonic mean of ! and t .  Figure 8.Al shows how to 
construct this series. It can be seen to be equivalent to Figures 8. 7a and 
8.8b. If this construction is applied to the Brunes star, the series at the top 
edge locates the positions at which a line segment is equipartitioned into 
2,  3 ,  4, 5 ,  6, and 7 parts. 

In Figure 8.A2, this construction is generalized so that if a rational 
number x = � (N is the numerator and D is the denominator) is located 
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X 

y 

Figure 8.A3 

on a number line between 0 and 1 on the top edge of rectangle, it gives rise 
to a pair of rationals (xlo = (N�D) and o:x) = (J:.D) • The second number 
is found by rotating the rectangle 180 degrees and reading its value on the 
number line on the bottom edge of the rectangle. For example x = i gives rise 
to i and i .  This construction will be shown in Section 9.4 and ( 1 4.3 . 10) 
to be the key to generating the Farey sequence, important to the study of 
dynamical systems and the structure of numbers. 

Dale Koepp [Koe] has generalized this construction to enable the 
geometric mean of any pair of numbers to be constructed. In Figure 8.A3 the 
harmonic mean of the numbers X and Y is sought. The harmonic mean is 
twice the length of the number Z. For example if X represents a length of 
string i (a musical fifth) corresponding to the fundamental tone of a string 
of length Y = 1 ,  the length 2Z represents the harmonic mean of i and 1 
or 1 ( a  musical third) .  In this way the harmonic mean can be constructed 
geometrically. The proof is given by Koepp: 

By similar triangles, 

Therefore, 

Z R - --
y (R+ S) 

Z Z R S 
- + - = -- + -- = 1 . 
Y X (R+ S) (R+ S) 

1 1 1 - = - + - . 
Z X Y 
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But from Equation (4. 1 ) ,  

1 1 ( 1 1 ) 
H(X,Y) 

= 2 X
+ 

Y 

where H(X,Y) denotes the harmonic mean of X and Y. 
Therefore H{X,Y) = 2Z. 

Appendix 8.B Projective Analysis of the Equipartition Properties 
of the Brunes Star 

In Figure 8.B1 a projective transformation is set up between lines l and m 
representing a pair of "railroad tracks" from the double square diagram of 
Figure 8.8a. Lines l and m have been placed in a cartesian coordinate system 
in which the horizon line is located on the y-axis and the point of projection, 
0, is at (0, t ) . Since one of the "railroad tracks", line m, is the diagonal 
of the double square, its slope is t and its equation is: 

X 
y = - .  

2 
(8.B1 ) 

Consider point X0 and its projection, X1 on line l, the x-axis. Point Xo is 
projected first through 0 to point (Xl >¥1 ) on m and then to (Xl >O) through 
0' at infinity in a direction perpendicular to line l. The line of projection 
through 0 has the equation: 

1 
Y - - = eX where the slope, 

2 (8.B2 ) 

But since (Xl >¥1 ) lies on m given by Equation (8.Bl ) , Equation (8.B2) can be 
rewritten, 

(8.B3 ) 

Setting Y = 0 and X =  X0 in Equation (8.B3 )  and doing some algebra yields, 

XI = 
Xo 

(1 + Xo ) (8.B4) 



0 

0 

00 

0' 

x .  

Chapter 8 A Secret of Ancient Geometry 1 93 

00 

Xo 1 

Figure 8.Bl Step measure transformation describes the structure of Figure 9.9a. 

For example, ifXo= 1 then Equation (8.B4) yields, X1 = 1 .  Likewise 1 maps 
to 1 , 1 to t , etc. Also notice that the point at infinity on line l maps to 1 
in this transformation. 

Taking points A, B, C, and D as 1 ,  1 ,  -} ,  t respectively, the cross-ratio 
can be computed as follows, 

That point C is the harmonic mean of B and D follows from the equation 
for the harmonic means given by Equation (4. 1 ) , i.e., 

The only fixed point of this projective transformation is located at (0,0). 
Therefore this transformation differs from the one in Appendix 4.A in which 
there were two fixed points. In a sense described in Section 2.5, the two fixed 
points of the transformation have coalesced into one resulting in what is 
called a step measure. To get another picture of this transformation we can 
do as we did in Appendix 4.A and map the fixed point to infinity. To do 
this, Draw an arbitrary line l' as in Figure 8.B2. A parallel line from (0,0) 
maps 0 on line l to infinity on line l'. The point at infinity on l maps to 
0 on l'. This also establishes the point of perspectivity, 0. Now it can be 
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I 
�--------�----��--�2�--------�--------�'---- oo  0 

I I 4 3 

00 

Figure 8.B2 Perspective transformation of an harmonic series to an integer series. 

shown that the harmonic series of points ""• 1 ,  f , 1 , t , . . .  map to an evenly 
distributed set of points on ( left to the reader), call them 0, 1 ,  2, 3 ,  4, . . . . 
You can check that the cross-product of 1 ,  2, 3, 4 is, A. =  (t)/{t) = 1 ,  and 
is therefore preserved as it should. 

So we see that, in general, while a sequence of transformed points can 
always be mapped to a geometric series when the projective transformation 
has two fixed points, they map to an arithmetical series when there is a 
single fixed point. 



9 
The Hyperbolic Brunes Star 

9.1 Introduction 

Numbers are the sources of form and energy in the world. 
They are dynamic and active even among themselves . . .  

almost human in their capacity for mutual influence. 

Theon of Symyma 

The Brunes star can be transformed by replacing each line within it by a 
segment of an hyperbola [Adam]. The mathematical functions that make 
up the hyperbolic segments of the new star are involved in countless problems 
in all of the sciences and we shall see them again in Chapters 14  and 22. 
"The little end of the stick problem" (LES) is one such illustration [Mos]. In 
this problem a stick is broken into two pieces at random. What is the average 
ratio of the smaller to the larger piece and what are their average lengths? 
Numbers that arise from the little end of the stick problem also make their 
appearance in problems of exponential growth and decay. In problems such 
as these, the probability that an event takes place either increases or decreases 
exponentially with the number of trials. Two examples are: 

( 1 )  the probability of tossing n heads in a row, and 
(2) the probability that a radioactive atom will decay in a given time 

period. 

LES also has a connection to Shannon's entropy function which comes 
up in many areas of mathematics and science. 

1 95 
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9.2 A Generalized Brunes Star 

The Brunes star can be generalized by replacing the eight line segments 
that make up the diagonals of its four half-squares by segments of an 
hyperbola juxtaposed in eight different orientations within a unit square, as 
shown in Figure 9 . 1 .  

Four of these hyperbolas intersect as shown in Figure 9.2 at three 
characteristic points p, q, r with coordinates: 

p = (0.414  . . .  ,0.707) = ( � ,  Jz} where, e = 1 + /i; 

q = (0.707 . . .  ,0.41 4) = ( .1·� } 
r = (0.61 8  . . .  ,0.61 8) = (!,!) , where, -r =  

l + .J5
. 

'r 'r 2 

Therefore, the key numbers of the Roman system of proportions fi and B 
(see Section 7.4), and the golden mean r (see Section 7.3 ) are represented 
in a single diagram. The hyperbolic Brunes star is shown in Figure 9.3. The 

'[] LJ [] [] 
0 X I 1 X 1 - X 

X 

EJ EJ [J [ZJ  
1 - x 1 1 - 2x 2x - 1  -X 

Figure 9.1 The eight hyperbolic segments that make up the "generalized" Brunes star inscribed 

within a unit square. 
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p = (l/.J2, 1/t) 
q = (1/t, lit) 
r = (119, li.J2) 

Figure 9.2 Two pair of these hyperbolas intersect at points related to the irrational numbers 
r, (J, and J2 . 

Figure 9.3 The generalized Brunes star. 

points of intersection lie on the edges of the three inner squares. The 
edge length of the innermost square is -r - 3, the middle square is 1 , and 
the outer square is (J-

l 
= J2 - 1 .  The outer square is the central square in 

the subdivision of a unit square into S, SR and RR in Figure 7 .4. 
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9.3 Zeno's Hyperbolic Paradox 

Consider, in Figure 9.4, an exploded view of the space between two segments 
of a hyperbolic Brunes star, and compute the sum of the vertical and 
horizontal line segments that make up the zig-zag path between this pair 
of curves. 

This leads to a modem version of one of three famous paradoxes expressed 
by the Greek philosopher Zeno who lived at Elea around 450 B.C.E. In this 
paradox, a tortoise traverses the distance between two points one mile apart. 
First the tortoise moves half the distance between the points. Then he moves 
half the remaining distance to the endpoint. He continues in this fashion 
always moving half the remaining distance from a new point to the endpoint. 
Since there are an infinite number of positions that he must pass before 
reaching the endpoint, it was a puzzle how the tortoise would ever reach its 
objective. At the end of the journey, the tortoise will have traveled distances 
given by the following infinite series, 

1 1 1 1 1 = - + -+ - +- + · · ·  
2 4 8 1 6  ' 

1 3 7 1 5 
2 '4 '8 ' 16 ' . . . . 

(9. 1a) 

(9.lb) 

We no longer have difficulty summing such a series and resolving the 
paradox. If we cut the series off at any point, the truncated finite series sums 
to a number approximating 1 .  As we go farther out in the series these partial 
sums are better and better approximations to 1 ,  as shown by Sequence (9. 1b) , 
approaching 1 in what mathematicians refer to as a limiting sense. 

Returning to Figure 9.4 the tortoise moves from the lower left hand 
comer to the upper right hand comer of the square moving along the 
zig-zag path between the pair of curves of the hyperbolic Brunes star [Adam]. 
It is clear that the total distance traveled by the tortoise will be two units. 

Using the two equations for the curves: 

1 
y = -- and 

2 - x  

2x - 1  
y = -- , X 
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y 0.5 

0 0.5 
X 

Figure 9.4 T A zig-zag path illustrating Zeno's hyperbolic paradox. 

we find that the horizontal distances sum to 1 as, 

1 1 1 1 1 
1 = - + - + - + - + - + · · · ,  

2 4 1 2  24 40 

1 3 5 7 9 
2 '4 '6 '8 '  10  

, 
. . .  ' 

while the vertical distances sum to 1 as, 

2 2 2 2 2 1 = - + - + - + - + - + · · · , 
3 1 5  35 63 99 

2 4 6 8 10  
3 '5 '7 '9 '11' " " " .  

(9.2a) 

(9.2b) 

(9.3a) 

(9.3b) 

Notice the elegant pattern that the partial sums in sequences (9.2b) and 
(9.3b) form as they approach their limiting value of 1 .  These are the distances 
that the tortoise traverses in the hyperbolic Zeno's paradox. 



200 Beyond Measure 

9.4 Hyperbolic Functions and Number 

The equations for the segments of the hyperbolic Brunes star are also 
generators of an important sequence of fractions known as Farey sequence 
that will be the focus of Chapter 1 4. For this reason I shall introduce this 
generation process here. 

From any fraction � with numerator N and denominator D, two 
successor fractions can be generated whose ratio equals the original, 

N 
and 

N+D ' 
D 

N+D 

(9.4a) 

{9.4b) 

This transformation is carried out graphically in Figure 8.A2. For example, 
l -7 l and i where l = (1)/(2) 5 7 7 5 7 7 .  

To recover the parent fraction from one of the successors, let the successor 
equal � , in which case its parent is, 

N 
if 

D-N 
D-N 

if 
N 

N < .!_ 
D - 2 '  
N � ! .  
D 2 

or 

Now let � = x in Equations (9.4a) and (9.4b) to get, 

In a similar way, Equations (9.5a) and (9.5b) result in 

X 
1 - x  

1 
for x < - and 

- 2 '  

(9.5a) 

{9.5b) 

(9.6a) 

(9.6b) 

(9.6c) 
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1 - x  
for 

X 
1 

x c - .  
2 

(9.6d)  

The graphs of Equations (9.6) are shown in Figure 9. 1 . lt can be shown that 
each of them is a rotation or reflection of a segment of the hyperbola y = ;- . Also, the pairs given by Equations {9.6a) and {9.6b), and Equations (9.6c) 
and (9.6d) are reflections of each other, and they are segments of the 
hyperbolic Brunes star (see Figure 9.6). 

9.5 Hyperbolic Functions in the Theory of Probability 

The hyperbolic functions of Equations (9.6) arise in many mathematical 
and scientific contexts particularly those related to the theory of probability. 
For example, if p and q are considered to be the probability of guessing correctly 
or incorrectly on the roll of a dice or the probability of winning or losing upon 
the selection of a horse in a race, then the odds of winning or losing is defined 
to be, 

p p 
odds of winning = p:q = q or 1 _ p since q = 1 - p;  

p 1 - p 
odds of losing = q:p = q or P 

Therefore, interpreting x as p in Equations (9.6) ,  the parent value can 
be interpreted as the odds of winning or losing when the probabilities 
of winning and losing equal the successor values. For example, if a horse 
has a t chance to win a race and a j chance to lose, then from Equation 
(9.6c) the odds of winning are 1 : 2  and the odds of losing are 2 : 1  ( the 
odds of a horse race are generally expressed in terms of losing odds). The 
payoff in a horse race is figured by multiplying the inverse of the probability 
of losing by the amount of the bet. So a $2 bet results in f X 2 = $3 
winnings. 

I shall discuss two additional examples of how Equations (9.6) arise in 
probability problems. 
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9.6 Gambler's Ruin 

A gambler starts with $ 1  and plays against the casino. He has the probability 
p of winning and 1 - p of losing. Visualizing his fortune on a number line, 

0 2 

If his fortunes ever reach 0, he has lost all of his money and is "ruined" and 
the game ends. It certainly makes no sense for him to play if his probability of 
winning is less than 1 ·  Eventually, he is sure to be ruined. It turns out that 
if p ;:::: f then the probability that he begins with $ 1  and is eventually ruined 

is Pt = !�p [Mos] . Figure 9.5 shows the dependency of p1 on p. Note that 

when p = 1 then Pt = 1 and he is sure to be ruined. As p increases above 1 the chance of ruin decreases. 
When the chance of winning p equals the chance of beginning with $ 1  

and being ruined Pt , 

or p = l - p
. 

p (9.7 )  

The solution of Equation (9.7 )  is p = � where r = l+[S , the golden mean 
(see Figure 9.5 ) . This is the value of p where the line intersects the curve. 
If the gambler begins with m dollars, then [Mos] shows that the probability 

Figure 9.5 A graph of probability of ruin PI vs probability of winning p. 
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of eventual ruin is Pm == C�Pt . Furthermore, it can be shown [Schr] that 
if p � ! , in order to maximize his winnings, the gambler must use Kelly's 
optimum betting strategy and bet the fraction 2p - 1 of his capital. 

9. 7 Little End of the Stick Problem 

If a stick is broken into two pieces at random, what is the average length 
of the small piece Savg, the large piece Lavg, and the ratio of small to large 

(f)av/ 
Consider the stick to have unit length. Certainly the longer length L 

can have any value between ! and 1 with equal probability, so that the 
stick is divided into two parts, 

�--- x------�� 1 - x� 

0 1 
2 

I I 
1 

where L = x and S = 1 - x where ! :::;; x :::;; 1 .  
In  the theory of probability, the average of some quantity f(x) that 

depends on a continuous variable x whose probability of occurrence is given 
by the probability density function p(x), is referred to as its expected value E[f(x)]. 
The variable x is called a random variable. If we wish to find the expected 
value of f(x) where a :::;; x :::;; b, for those who understand calculus, it can be 
determined by evaluating the following integral, 

E[f(x)] = s:r(x)p(x)dx where I><x)dx = 1 .  

When all values of the random variable x are equally likely, 

1 1 rb 
p(x) = - , and E[f(x)] = - J, 

f(x)dx 
b - a  b - a  a (9.8) 

which is equal to the area under the curve y = f(x) divided by b - a. 
Applying this to the little end of the stick problem, 

1 Jl 3 Lavg = E[x] = - 1 xdx = -, 
1/2  2 4 

(9.9a) 
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1 Savg = 1 - Lavg = - , 
4 

Savg : Lavg = 1 : 3, and ( S J 1 i1 1 - x  - = - -dx = ln 4 - 1 = 0.38629 . . .  
L 1 / 2  1 / 2 X avg 

where ln stands for natural logarithm or loge. 

(9.9b) 

(9.9c) 

(9.9d) 

Using knowledge of calculus to compute area A beneath the two 
hyperbolic segments of the Brunes star given by Equations (9.6c) and (9.6d) 
(see Figure 9. 1 ) , we find that area A is determined by Equation (9.9d) ,  i.e., 
area A = 0.38629 . . . . 

The evaluation of an average in mathematics is a tricky business. If we 
use Equations (9.6a) to determine the lengths of S and L whose sum is 1 
and whose ratio is (t)avg = 0.386 . . .  , then we find, 

1 
x =  = 0.72 1 . . . ,  

1 + 0.38629 

1 - X = 
0·38629 

= 0.2 786 . . . .  
1 + 0.38629 

(9. 10a) 

(9. 10b) 

Therefore the unit stick with average value, with respect to x, of (f) avg = 
0.386 . . .  , has segments of length 0.278 . . .  and 0.72 1 . .  . .  You will notice that 
these are slightly different from the values obtained in Equations (9.9b) and 
(9.9c) ,  reflecting the fact that, (t>avg :I; SaviLavg· 

Malcomb Lichtenstein [Lie] carried out a computer experiment to 
simulate the little end of the stick problem. He randomly selected 1000 values 
of x between 0 and 1 and computed the ratios of t = (x�l) or (l�x) obtaining 
an average value of 0.386 . . . .  He also found that the average values of S and L were 0.25 . . .  and 0. 75 . . .  in agreement with results of Equations (9.9a) 
and (9.9b) .  

Lichtenstein also simulated the breaking of a stick of unit length into 
three segments and obtained the results: 

L - 1 1 2 
1 - - Lz = - and L3 = - . 

1 2 ' 4 ' 3 
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This can be verified analytically as follows. First compute the average 
value of the largest segment L3• Letting L3 = x. Clearly 1 � x � 1 .  Using 
Equation (9.8) ,  

1 11 2 
L3 = E[x] = - xdx = - .  

2/3  1 /3 3 

The remaining t of the stick is then broken into the other two segments 
L1 and Lz in the ratio L1 :L2 = 1 :3 as before (see Equation (9.9c) ) ,  i.e., 

1 
L1 + Lz = - and L1 : Lz = 1 :  3 .  

3 

Solving these equations we find that, 

1 1 
L1 = - and Lz = - . 

1 2  4 

Together with L3 = i this is in agreement with Lichtenstein's results. We also 
see that, 

L1 : Lz : L3 = 1 :  3 :  8 .  (9. 1 1 )  

Continuing in a similar fashion the result of Equation ( 9. 1 1 )  can be used to 
find the segment ratios for the subdivision of the stick into four parts, etc. 
I have determined the result of breaking sticks into n-segments, and I have 
found that the ratio of segments exhibits a simple pattern. This pattern can 
be generated beginning with the numbers 0 and 1 as follows: 

n = 1 
2 
3 
4 
5 
6 

0 1 
0 1 3 = 3 x l - O 
0 1 3 8 = 3 X 3 - (0 + 1 )  
0 1 3 8 20 = 3 X 8 - (0 + 1 + 3 )  
0 1 3 8 20  48  = 3 X 20 - (0  + 1 + 3 + 8) 
0 1 3 8 20 48 1 12 = 3 X 48 - ( 0 + 1 + 3 + 8 + 20) etc. 

Some of the numbers generated by the little end of the stick problem will 
be shown to have significance in the theory of numbers (see ( 1 4.4. 1 1 ) ) .  
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9.8 Shannon's Entropy Function and Optimal Betting Strategy 

There is a connection between the LES problem and Shannon's entropy 
function important in information theory [Adam]. Imagine trying to get 
information from someone by asking him to choose from a list of four equally 
probable possibilities. The correct answer carries more information H than if 
he chose an answer from only two possibilities. In the first case the probability 
of his choice is p = t and in the second case p = t .  In terms of p, Shannon's 
entropy function H is expressed as, 

H = -(p logz p + (1 - p) log2 (1 - p) ) .  (9. 12 )  

The lower the entropy, the greater the information content. If p = t then 
H = 1 ,  a maximum value. 

The entropy function is pictured in a unit square in Figure 9. 7. The areas 
under (B) and outside (C), the entropy curve, equal the average values of 
the small and large portions of the broken stick, i.e., 

Area B = 0.72134 . . .  , and 

Area C = 0.27865 . . .  , while 

AreaC 
A B 

= 0.38629 . . .  
rea 

which has the same value as Area A in Figure 9.6. 

Figure 9.6 Area A under Equations (9.6c) and (9.6d) gives the ratio 0.386 . . .  of the small to 
large portions of the "little end of the stick problem". 
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B - = A c 

A =  0.3862 . .  . 
B = 0.72 1 3  .. . 
c = 0.2786 .. . 

Figure 9. 7 Areas under and over Shannon's information formula relates to the "little end of 
the stick" problem. 

Schroeder shows that when the optimum betting strategy, 2p - 1 ,  is used 
the gambler in the previous example of gambler's ruin will see his fortunes 
grow at the rate r of, 

r = zl-H(p) - 1  (9. 13 )  

dollars per tum at the gambling table if his winning probability is greater 
than p = 1 ·  In this equation C(p) = 1 - H(p) where C(p) is referred to in 
information theory as the channel capacity. Notice that if p = 1 then H = 1 ,  
and this formula indicates no growth, whereas if p = 0.6 (an exceptionally 
good probability at a gaming table) ,  using Equation (9. 12 ) ,  H = 0.971 and 
the rate of growth is 2°--D·97

1 l - 1 = 0.0288 dollars per toss. At this rate the 
compound interest formula predicts that the number of tosses n (time periods) 
that it would take to double his fortune is given by n = ln f or about 
34 tosses. 

By a more direct route the growth rate of the optimal betting strategy 
2p - 1 is 

r = 2Q - 1 where Q = pP (1 - p) 1-p . (9. 14) 

Figure 9.8 relates the probability p along the x-axis to growth rate r along 
the y-axis. For a probability of winning greater than 0.5 we refer to the right 
half of the graph which has bilateral symmetry (right half is the mirror image 
of the left half) . However, the left half with p < 0.5 refers to negative growth 
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Growth Rate 
(r) 

0.8 

0.6 

0.4 

0.2 

0.4 0.6 0.8 
Probability (P) 

ln 2  

Figure 9.8 Rate of growth of "winnings" r plotted against probability of winning p. 

rates. Notice that when p = 0.96043 . . .  the growth rate is ln2. At this rate 
the gambler's fortune doubles on each "toss". 

What if we attempted to use Shannon's formula to arrive at an estimate of 
the rate at which an evolutionary process in nature increases its payoff which 
could be a measure of the adaptability of the organism to its surrounding 
environment over some number of unknown time periods or tosses? A rough 
measure of the average rate at which an entirely random process grows is 2 
raised to a power equal to Area C (the expected value of the channel capacity) 
in Figure 9.7 or 2°·27865 - 1 = 0.2 13  increase in adaptability per toss. The 
doubling time for this rate is 3.25 tosses or time periods. So we see that 
evolutionary processes may be, intrinsically, quite adaptable at least compared 
to the rate of winning at a gaming table. 

9.9 The Generalized Little End of the Stick Problem 

The little end of the stick problem makes a surprise appearance in a class 
of problems in which the probability y that an event takes place either 
increases or decreases exponentially with the number of trials x. In other 
words, y = k -x or y = 1 - k -x where k > 1 ,  which predicts the probability of 
tossing x heads in a row, the probability that a radioactive atom will decay 
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l logk2 2logk2 3logk2 4logk2 

X 

Figure 9.9 Probability that an event occurs y plotted against the number of trials x. The 
probability decreases exponentially. 

in a given time period, the discharging of a capacitor, the cooling of a warm 
object and many other applications. 

Figure 9.9 shows that when x increases from n logk2 to (n + 1 )logk2 the 
value y is reduced by 1 .  Within each increment of this diagram there is a 
generalized increment rectangle (see insert) . The total area beneath the 
curve is l�k , while the area beneath the curve in each increment rectangle 
is zn�nk . (Note that logk 2 = ��� by Equation (3.Al ) . )  The ratio of the area 
beneath the curve y = k -x (white area) to the area of the increment rectangle 
is 0.72134 . . .  while the area above the curve (black area) is 0.27865 . . .  (note 
that both numbers are independent of k), the lengths of the little end 
of the stick problem (see Equations ( 9. 1 Oa) and ( 9. 1 Ob) ) . Therefore, the 
increment rectangle acts as a kind of two dimensional stick. Although 
the value of y decreases by a factor of 1 over the increment rectangle, its 
average decrease is 0. 72134 . . . .  

Special Case 1 .  k = e. The curve corresponds to radioactive decay with a 
unit decay constant, and the x values: ln2, 2 ln2, 3 ln2 ,  . . .  represent the 
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successive half-lives of the decaying material. The half-life of a radioactive 
substance is the time that it takes for half of the atoms to decay. The area 
under the entire curve is 1 while the areas under the curve within each 
· I · b h  · · 1 1 1 1 mcrement rectang e are gtven y t e geometnc senes: 2 , 4 , 8 ,  T6 , . . . .  

Special Case 2. k = 2. Increment # 1  is a unit square and the area under the 
curve in the first increment is the random probability constant 0. 7213 . . . .  
The other areas decrease according to the formula t n In 2 .  This time the 
generalized half-life is x = 1 and successive half-lives increase according to 1 ,  
2 ,  3 ,  4 ,  . . . .  

Special Case 3. Let k be less than 1 .  Using an example from gambling, the 
probability of throwing a 1 2  with two dice is p = l6 , while the probability 
of not throwing a 1 2  is 1- p = �� . The probability of not getting 1 2  on two 
throws is GD2 while the probability of not getting a 1 2  on x throws is G�f . 
We seek the number of tosses x needed to give us even odds (probability 
of t of getting at least one 1 2). 

Solution. Take the inverse of the probability of losing ( �D and turn it into 
a function y = k -x where k is the inverse of losing, i.e., k = �� . The value 
of x at which y = t is logk 2 = l�� = gi6lf7::. = 24.6 . . .  , therefore it will take 
25 tosses to get a probability of 1 of getting at least one 1 2. In other words, 
you get at least one twelve at most 50% of the time when you toss two dice 
24 times. 

The problem of getting a 1 2  on the throw of two dice can be generalized. 
Certain gambling problems ask for the number of trials necessary to insure one 
success given any probability of a success or failure. The number of trials n 

is given by, 

lnF 
n = --

lnN 
(9. 15a) 

where N is the probability of non -occurrence of the event, and F is 
the chance of failure to obtain a success during n trials. If k = � then 
Equation (9. 1 5a) can be rewritten, 

(9. 1 5b) 
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the equation for the decay problem in which a fraction F of the original 
material remains after one emptying period. For example, if F = t ,  we get 
n = logk2 ,  the half-life. In other words for the dice problem, N = �� and 
F = t resulting in n =  24.6 or 25 trials. Likewise, to determine the number of 
tosses to guarantee a 1 2  on a pair of dice 90% of the time, let F = 1 - 0.9 = 

0.1 in which case, using Equation (9. 15 ) ,  

n = 
lnO. l  

= 81 .7  or 82 trials . 
In 35 36 

As another example, let's say you want to find someone whose birthday 
matches yours. How many people are you required to ask to get a 50:50 
chance of making a match? 

Answer. Each time you ask someone his or her birthday the chance that their 
birthday is the same as yours (a success) is 3�5 , and the chance that their 
birthday is not the same as yours (failure) is N = ��� . Since the chance 

of failing to get a match in n trials is 0.5 , F = t .  Therefore, using 
Equation (9. 15 ) ,  you must ask 252.65 or 253 people. 

Compare this with the result of the more standard birthday problem in 
which one asks how many people, selected at random, are required in order 
to insure that there is an even chance (50% probability) that at least two of 
them have birthdays on the same day. The theory of probability shows that 
only 23 people are required. 

9. 10 Conclusion 

There is a relationship between the Brunes star generalized to hyperbolic 
functions and a problem in probability theory known as the "little end of 
the stick" problem. The hyperbolic relationships arise naturally in the theory 
of odds making and betting. The solution to the little end of the stick 
problem also yields a constant that corresponds to the average value of an 
exponentially decaying material during its half-life. We shall again meet up 
with the little end of the stick problem in Chapter 14 in the context of 
number theory. 
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These wide ranging applications of mathematics leading from geometry 
and pure number have drawn people through all ages and civilizations to a 
study of this subject. During the Renaissance artists and architects such as 

Durer, Brunelleschi, Alberti, and Leonardo da Vinci with their studies of 
perspective and the theory of proportions had a profound influence on 
mathematics. In the next chapter I will explore the underlying geometry of 
a set of pavements which may have been designed by Michelangelo. 



10 
The Hidden Pavements of the Laurentian Library 

I would have nothing on the walls or floor of the temple that did not 
have some quality of Philosophy . . .  I strongly approve of patterning the 

pavement with musical and geometric lines and shapes so that the 
mind may receive stimuli from every side. 

Alberti 

10.1 Introduction 

In the preceding chapters, I have conjectured that the architects of antiquity 
used such tools of the trade as: 

( 1 )  the sacred cut (Section 6.2); 
(2) the Brunes star (Chapter 8); 
(3) the square -within-a-square or ad -quadratum square (Section 8.3 ) ;  
(4) circle grids (Appendix 6.A) ;  
( 5 )  the Roman system of proportions (Section 7.3 ) ;  
(6) the law of repetition of ratios (Section 7.4) ;  and 
(7 )  the golden mean (Section 7.3). 

Unfortunately, there is scant evidence that the component parts of this 
body of knowledge were ever considered as a whole; few architectural 
drawings or mason's manuals from ancient times have survived. Several 
scholarly investigations have been made of ancient Roman ruins that support 
the existence of a geometer's "tool kit" (cf. [Wat-Wl ] ,  [WatC] ) .  However, 
even in these studies there is a great deal of speculation. Therefore, it was 
with great interest that I received a telephone call from Ben Nicholson, a 
professor of architecture. He had become privy to a set of facsimiles of 15  
pavement designs - possibly created by  Michelangelo - that lay hidden 

213 
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beneath the floorboards of the Laurentian Library in Florence. He was 
trying to decipher their geometries in order to reconstruct them at full 
scale. One thing led to another and I found myself part of Nicholson's team 
of researchers devoted to the study of the pavements. The results of this 
work have given additional evidence for the use of the ancient geometer's 
"tool kit". 

10.2 The Laurentian Library 

The Laurentian Library, which was designed by Michelangelo, is situated on 
the second floor of the San Lorenzo church complex in the heart of Florence. 
Work on the library was begun in 1 5 23 by Pope Clement VII , alias Givlio 
Medici, the nephew of Lorenzo di Medici, as a monument to his uncle; it 
was opened to the public 48 years later by Grand Duke Cosimo I. The library 
was meant to be a home for the books from antiquity that survived to the 
Renaissance. 

In 1 774, a portentous accident occurred in the Reading Room of the 
Laurentian Library [Nic], [NKHl] .  The shelf of desk 74, overladen with 
books, gave way and broke. In the course of its repair, workmen found a red 
and white terra-cotta pavement which had lain hidden for nearly 200 years 
beneath the floorboards. The librarian had trapdoors, still operable today, 
built into the floor so that future generations could view these unusual 
pavements. In 1 928 the pavements were photographed for the first time when 
the desks were removed temporarily while structural repairs were made to 
the subflooring. Figure 10. 1  shows a photograph of the Library both with 
and without the desks and floorboards. 

Overall, the pavement consists of two side aisles and a figurative center 
aisle. Desks situated on a raised wooden dais have been placed over the 
pavements. On the side of each desk are listed the books that were to be 
stored in it. Beneath the desks are a series of 1 5  panels, of different designs, 
each about 8'6" X 8'6". The 1 5  panels along one aisle mirror the ones on 
the other aisle, but differ in subtle ways. When juxtaposed, the fifteen pairs 
of panels appear to tell a story about the essentials of geometry and number. 

The design of each panel reflects a specific geometric structure: for 
example, the tetractys (Panel 5 ;  see Section 3.5 ) ,  Brunes's star (Panel 13 ;  
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(a) 

(b) 

Figure 10.1 TI1e Laurentian Reading Room - with and without desks. Details of the floor of 
the Hall of Michelangelo. With permission of the Ministry/Department (further reproduction 
by any means is prohibited). 
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see Chapter 8 ) ,  root-two and the sacred cut (Panels 7 and 1 1 ) ,  Plato's 
lambda (Panel l4; see Sections 3.5 and 7.2) ,  or the golden mean (Panel 13 ;  
see Section 7 . 2  and Chapter 20 ) .  When assembled together they 
encompass the essential principles known to early geometers. 

Although hidden from view today, Nicholson believes that the panels 
were arranged according to a plan for a furniture layout that would have 
exposed the panels, but this plan was changed after the panels had been made. 
Thus, while walking through the Reading Room of the Laurentian Library, a 
person would have been surrounded by the foundations of ancient geometry, a 
perfect compliment for the 3000 classical texts chosen to reveal the body of 
ancient and modem learning of that day. In fact, it is Nicholson's belief 
that the pavements may have formed a pictorial catalog for the books 
adjacent to the panels, the geometry of the panels corresponding to the 
categories by which the books were to be arranged. Details of a system 
correlating pavements to books can be found in Thinking the Unthinkable 
House [Nic]. 

10.3 Reconstruction of the Pavements 

Ben Nicholson has worked with students for 13 years to reconstruct the 
system which the team of geometers and theologians, perhaps including 
Michelangelo, might have used to create the original designs. He has recently 
collaborated with artist Blake Summers and architecture graduate student 
Saori Hisano to replicate all l5 panels at full scale, working with straightedge 
and compass. In the process, they have discovered tenets of geometry which 
may have formed the basis of an organized system or taxonomy. An early 
version of Nicholson's taxonomy has been described elsewhere [NKHl] .  

At first glance, the panels all appear to be square. However, curious 
irregularities guide the dimensions of each panel. Each panel is set into 
a rectangular frame that measures approximately 4 braccia ( 233 em) 
by 4t braccia (248 em) ,  but the size of each panel is slightly different. 
Nicholson proposes that the geometric grids and associations to number 
found in the pavements respond to the essential theological and scholastic 
questions posed in the 16-th century. For example, Plato's Lambda orders 
panel 1 4, shown in Figure 1 0.2 .  The panel aligns well in its general 
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Figure 10.2 Panel l4, the Timaeus panel. 

appearance with descriptions in the Timaeus which set the Lambda within 
four interconnecting circles [Kap8]. N icholson's proposition that each pair 
of panels differs very slightly from East to West now becomes relevant to 
the discussion. For example, there is evidence to suggest that Panel 1 4  East 
is laid out on a grid of 8 1  parts, and that Panel 1 4  West is laid out on a grid 
of 80 parts. As discussed in Section 3 .5 ,  80:81 is a measure of the comma's 
difference between the Pythagorean and Just musical scales. Could this have 
been intentional? In the remainder of this chapter, I will present details of 
three panel reconstructions. 

10.4 The Sacred-Cut Panel 

Nicholson refers to Panel 1 1 ,  shown in Figure 10.3, as the "Sacred Cut 
Panel" because it is constructed from the sacred cut at four different scales. 
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Figure 10.3 Panel l l , the Sacred Cut panel. With permission of Biblioteca Medicea Laurenziam. 

Appendix 10.A describes a series of elements from the Nicholson taxonomy 
showing how the sacred cut and its relationships follow naturally from the 
square circle grid (see Appendix 6A). As with any mannerist design, there 
is always more than one way to view it, and when viewed along its diagonal, 
a cartesian grid structure reveals itself. 

The panel can be seen to be made up of three classes of white strips: the 
eight strips radiating from the center square are referred to as white bands, 
the strips surrounding each of the squares are referred to as white strips, 
while the wider strips connecting one square to the next are referred to as 
white band connectors. What follows is an analysis of Panel 1 1 .  

10.4. 1 In Figure 7.4 I showed how, using the sacred cut, a square could be 
subdivided into four comer squares, a central square, and SR and RR 
rectangles. I will refer to this subdivision as a sacred cut subdivision of a 
square or SCSS. Figure 10.4 shows this subdivision along with its dimensions: 
they assume that the comer squares have unit length. From Figure 1 0.4 we 
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Figure 10.4 Sacred cut subdivision of a square showing dimensions assuming that the corner 
square has unit length. 

see that: 

(a) The ratio of the sides of the outer square to the corner square is 
(} ..fi:l ; 

(b) The ratio of the overall square to the central square is (}: 1 where 
(} = 1 + .J2; and 

(c) The sacred cut divides the side of the overall square in the ratio lJ: l .  
These relationships can also be deduced from Table 7.2 .  I f  integer 
approximations are desired, corresponding values from Table 7.2 can be 
used. 

10.4.2 The process of subdivision can also be carried out in the reverse 
direction. Begin with the central square and reconstruct the outer square from 
which it was derived. To do this draw four circles about the four vertices 
of the central square with radii equal to the distance from the vertex to the 
center of the square. The outer square inscribes these four circles as shown 
in Figure 10.5. 
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tt 

Figure 10.5 Reconstructing the outer square 
of the sacred cut subdivision given the central 
square. 

Figure 10.6 Schematic subdivision of pane! I I  
into a series of three sacred cut subdivisions of a 
square. 

10.4.3 In Figure 10.6 this method is used to explode the central square 
outwards to three successively larger scales. This series of sacred cut 
subdivisions of a square (SCSS) can be observed on Panel 1 1  ( see 
Figure 10.3 ) .  If the central black square has a length of 1 unit, then the 
sequence of squares have lengths that increase in the series 1 ,  8, fl-, tY as 
can be determined from Step 1b, Figure 10.A1e of Appendix 10.A, or by 
using the Roman system of proportions described in Section 7 .3. Using 
Sequence ( 7.8) we can also represent all lengths approximately in terms of 
integers. 

10.4.4 Nicholson's team of empirical geometers note that if a square is 
rotated about its center through 45 degrees, the pair of squares recreates the 
SCSS as shown in Figure 1 0. 7  and Appendix lO.Alb. Also a square-within­
a-square creates a 4 X 4 grid of congruent squares as shown in Figure 10.8. 
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Figure 10.7 Rotating a square by 45  degrees 
creates a sacred cut subdivision of a square. 
Sacred cut squares are drawn in the corner 
squares to show how white band connectors are 
created. 

Figure 10.8 A square-within-a-square creates 
a 4 X 4 grid of congruent squares. 

1 0.4.5 A sacred cut is drawn in one of the comer squares of the outer 
square of Figure 10.7. Since the outer square is the third in the sequence of 
SCSS, it measures fl. Therefore, by step 1 a, the comer square measure � 
and the band connector is determined from step 1 b to be Jz . 
10.4.6 In Figure 10.9 the first technique of Step 5 is applied to a pair of 
squares superimposed on panel 1 1 .  Within the first square the sacred cut 
geometry is evident. The second square, inclined at 45 degrees to the first, 
is subdivided into a 5 X 5 grid of squares. The central white square of the 
panel is inscribed as a square-within-a-square within the central square of 
the 5 X 5 grid. This provides the grid with a natural refinement into 4 X 4 
subgrids. In this way the positions of the white strips are determined. The 
design becomes an elaborate interplay between sacred cut squares and 
congruent squares. 
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Figure 10.9 Panel l l  superimposed on a pair of rotated squares. Viewed in one direction the 
panel is organized by the sacred cut subdivision. Viewed at 45 degrees the panel is a 5 x 5 grid 
of congruent squares. 

width of white stripe 

Figure 10.10 Subdivision of the central square to create the widths of the white bands and 

white stripes. 
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10.4.7 The width of the white strips are found by considering the central 
black square of width 1 unit to be the central square of a SCSS with the 
outer square measuring (} units. By step la, the white strips then have a 
width equal to the sides of the comer squares measuring Jz. To find the 
white bands we must descend one more step into the black square to create 
another SCSS in which the center square has of width t shown in 
Figure 10. 10. The width of the white band is the width of the comer square 
of this SCSS measuring 9�2 by step l a. This white band can be constructed 
from a sacred cut of the central black square by the compass and straightedge 
construction shown in Figure 10. 10. 

It is worth noting that Nicholson has also drawn this panel without the 
use of geometry upon a series of four overlapping grids of 4, 5 ,  6, and 7 parts. 
Nicholson believes that the error of this construction was small enough to 
be buried in the grout of the interlocking terracotta pieces. 

10.5 The Medici Panel 

Panel 2 ,  shown in Figure 10. 1 1 ,  is called the "Medici panel". It seems to be 
wholly symmetrical and it has the same appearance as the antique rosettes 

Figure 10. 1 1  Panel 2, the Medici panel. 
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of which there are many examples in Renaissance design. At the center of 
the rosette lies the Emblemata of Cosimo I from the house of the Medici, 
advertising the 3 -fold symmetry of the pattern. However, at second glance 
the panel exhibits the mannerist tell-tale irregularities that are common to 
all the Laurentian pavement designs. First, the panel is not square; it is a 
rectangle whose sides are in the ratio of 1 2: 1 3  (the Laurentian Library kindly 
permitted Nicholson to make rubbings of this panel from which it has been 
possible to assemble a set of accurate measurements) ;  second, curving white 
bands radiate from the center, never present in the antique form; and finally, 
ovals are set into the residual spaces between these bands. The following steps 
show that Panel 2 is created by superimposing 96 circles on a 1 2: 1 3  rectangle 
that is composed upon a 13 x 13 square: 

Step 1 .  The ratio of 12 : 13  is the ratio between the radius of an octagon 
and the radius of the circle circumscribed about the octagon, to 0. 1% 
accuracy. This is also the ratio of a pair of sides of a 5 : 1 2: 1 3  right triangle 
as shown in Figure 10. 1 2a. 

Step 2. Draw a second 1 2 : 1 2  square within the 1 3 : 1 3  square (see 
Figure 10. 1 2b) and place the x and y axes at the center of the squares. 

Step 3. Draw an equilateral triangle with side equal to the base of the 12 : 1 2  
square. The distance from the apex P of this triangle to the center of the 
square determines the radius of a circle. This circle is called the pitch circle 
(see Figure 10. 1 2b). The radius of the pitch circle differs from t the diameter 
of the 1 2: 13  rectangle by less than 1%.  Either value can be used for this 
construction. However we use the first because of its elegance. This 
construction was also described by Paul Marchant [Mar] , a member of Keith 
Critchlow's London based group studying traditional geometry. 

Step 4. Place x and y axes at the center of the rectangle and draw a rosette 
pattern with 24 circles by the following procedure: 

(a) Draw six circles whose radii are the same as the radius of the pitch circle. 
The first circle has its center point at the intersection of the pitch 
circle and the upper y-axis; each of the other five circles' center points 
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(a) 

(b) 

Figure 10. 1 2  (a) An approximate 12 : 13  ratio of lengths constructed from an octagon; 
(b) a 1 2  X 1 2  square placed within 13 X 13 square. An equilateral triangle is placed on the base 
of the 1 2  X 1 2  square to locate the pitch circle. 
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are intersection points between the pitch circle and the preceding circle 
( see Figure 10 . 13a). The centers of these circles define two sets of three 
axes through the center of the rectangle corresponding to the 3 -fold 
axes of the Cosima symbol in the center of the design (see Figure 10. 1 1  ). 
Notice that four of the circles intersect the vertices of the 1 2: 1 2  square. 
It is also worth noting that the rosette produces a series of intersections 
between adjacent circles, known as the Vesica Pisces, a key figure of sacred 
geometry [Kap3]. It was in this region that images of Christ were placed 
in many sacred designs. 

(b) Draw six more circles using the same method as Step 4a starting, this 
time, with the intersection point of the pitch circle and the right hand 
x-axis as the first center point (not shown) .  

(c) Repeat Steps 4a  and 4b by using intersection points between the pitch 
circle and diagonal lines of the 13 : 13  square as center points to create 
1 2  additional circles forming the 24 circle rosette pattern shown in 
Figure 1 0. 13b. 

Step 5. The rosette is composed of a grid of curvaceous diamonds formed 
by the intersection of the first 1 2  circles and the second 1 2  circles (see 
Figure 10. 13b). Using as centers the midpoints of the arcs on the pitch circle 
connecting adjacent circles of the rosette pattern draw 24 additional circles 
(not shown) to make a total of 48 circles. 

Step 6. The small mismatch between the diagonals of the square and 
rectangle leaves space to construct a reference circle as shown in Figure 1 0. 13c. 
Replicate this reference circle at the intersection points of the pitch circle 
and 

.
the latest 24 circles. These 24 circles intersect the pitch circle at 24 

points. Four of the 24 replicated reference circles are shown in Figure 1 0. 13c. 

Step 7. Draw 48 circles with the same radius as the pitch circle and centers at 
the 48 intersection points of the pitch circle and the 24 reference circles from 
the previous step as shown in Figure 10. 13c. These circles are to become the 
white bands of the Panel 2. This step demonstrates how the panel makes 
"Mannerist space" out of the difference between the series of circles generated 
by the 12 : 1 3  and 13 : 13 diagonals. 
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(a)  (b) 

(c) 

Figure 10.13 (a) Six circles with radius equal to the pitch circle are drawn; (b) a rosette of 
24 circles; (c) 24 additional circles are drawn bisecting the curvy diamonds of the rosette, and 
a reference circle is shown with diameter equal to the gap berween the diagonals of the square 
and rectangle. The intersection of 24 reference circles with the pitch circle (four circles are 

shown) locates the center of 48 additional circles marking the white bands of panel 2. 
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Figure 10. 14 The reconstructed terracotta design of Ben Nicholson and Blake Summers. The 
panel is shown to be organized around 96 identical circles. 

Step 8. In the final step ovals of eight different types are created, to fill the 
diamond shapes. The details of this step are beyond the scope of this book. 

The painted reconstruction of the terracotta design by Nicholson and 
Summers is shown in Figure 10. 14. Nicholson hypothesizes that this design 
represents an interplay between the circle representing the heavenly realm 
and the square and rectangle representing the earthly domain. The ratio of 
1 2: 13 represents the solar and lunar cycles since the sun goes through the 
1 2  signs of the zodiac approximately in the time that the Moon makes 13 
revolutions about the Earth. The 96 circles that make up the pattern and 
the original pitch circle are grouped in the series: 1 ,  3 + 3 ,  6, 1 2, 24, 48. 
We recognize this sequence to be the sequence that was used in the Titius­
Bode law (see Section 5.4) to determine the relative distances to the sun 
of the planets up to Saturn (all the planets known in the year 1 550). 
Therefore the designer of this pavement was able, either consciously or 
unconsciously, to compress a great deal of information into a geometrical 
setting. 



Chapter 1 0  The Hidden Pavements of the Laurentian Library 229 

The panel on the other side of the library is identical except that it fits 
into an 1 1 : 1 2  rectangle. Nicholson believes that the numbers 1 2  and 1 1  may 
refer to the number of Christ's disciples before and immediately after the 
removal of Judas from their midst. However it could also refer to the fact that 
fitting all 1 2  tones into the chromatic musical scale was seen in ancient times 
as a struggle between the rational and irrational, the finite and the infinite. 
We have seen in Section 3.5. that only 1 1  of the 1 2  tones of the musical scale 
can be expressed as the ratio of small whole numbers. The twelfth tone must 
be represented by an awkward approximation to J2 . 

10.6 The Mask Panel 

Nicholson has chosen to name Panel 13 ,  shown in Figure 10. 15 ,  the "Mask" 
panel. When looked at either directly or from the side it appears like the 
classical masks of the theater popular at the time with either a happy or sad 
face. In fact Michelangelo made a number of carvings of the "mask of night". 
Two members of Nicholson's team Saori Hisano and Hingan Wibisono 
were able to use a combination of the golden mean and the Brunes star to 
reconstruct this panel. 

Figure 10. 15  A terracotta reconstruction of Panel 13,  the "Mask" panel. 
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't 

Figure 10.16 Schematic of the mask panel. A central square is juxtaposed with two golden 
rectangles. The central square is trisected by the Brunes square construction. Each trisection 
is then subdivided again into fourths by the Brunes star at a smaller scale. This produces a 
1 2  x 1 2  grid. 

Rather than go through his detailed explanations, we present in 
Figure 10. 16  one of the diagrams in which Nicholson has defined a central 
unit square and two symmetrically placed golden rectangles (proportions 1 :r) . 
The construction lines to create the golden rectangle are shown in the figure 
and will be described in greater detail in Section 20.4. The central square 
is trisected by the methods of Brunes into first a 3 X 3 grid. Then each third 
is divided again by the Brunes star into a 4 X 4 grid. As a result the original 
square is divided into a 1 2  X 1 2  grid. Notice that the Brunes star and the 
golden rectangle share construction lines. Once again, the panel is just off 
from being a square, with the difference between the length and width being 
equal to i ,  i.e., a width of A placed on either side of short side. 

In Figure 10. 1 7  four circles of radius � are drawn about each vertex 
of the central square as centers. The width of the four oblong regions of 
intersection of these circles equals the diameters of the four black circles of 
the mask pattern. They are equal to t12 units. These oblong regions are 
somewhat reminiscent of the Vesica Pisces regions that formed the basis of 
panel 2. From this construction, Nicholson was able to deduce that the widths 
of the white annuluses around the black circles and the narrow white 
annuluses in the left and right sections of the pavement were related to the 
golden mean and summed to 112 , the width derived from the Brunes star. 

The reconstructed terracotta Mask panel created by Nicholson, Hisano, 
and Wibisono is illustrated in Figure 1 0. 15 .  The geometer appears to have 
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Figure 10. 17  Four circles of diameter � drawn at the vertices of the central square proportions 
the four black circles of the Mask panel. 

found ingenious ways of wedding two geometrically different worlds, the one 
of the golden mean and the other of the Brunes star. 

1 0.7 Conclusion 

The pavements of the Laurentian library have presented us with a set of 
geometrical puzzles. They are remarkable because they present an almost 
complete set of the predominant forms of ancient geometry. The extensive 
occurrence in the pavement panels of particular geometries and the numbers 
they spawn suggest that the pavement designers were cognizant of the bond 
between number and myth that modem scholarship is once again making 
available for us. 

Nicholson believes that the panels are an unambiguous expression 
of Mannerism. He considers that the pavement constitutes a document of 
Mannerist number theory, albeit expressed in the language of geometry, 
and that, in a wholly reasoned way, it presents issues of paradox and a 
confrontation with the status quo for which Mannerist art is so famous. It 
is also possible that the pavement forms the treatise on proportion that 
Michelangelo wanted to write and that was alluded to by Condivi in his 
1 553 biography - The Life of Michelangelo. 
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Appendix 1 O.A The Sacred Cut and the Square Circle Grid 

lO.A.l The sacred cut subdivision (SSCS) lies dormant within the square 
circle grid described in Appendix 6.A. Saori Hisano [NKHl]  has brought 
attention to these sacred cut relationships by focusing upon the square 
circle grid in the proper way. In Figure lO.Ala, a square and its diagonals 
are highlighted within which the center circle of the nine circles making up 
the square circle grid of Figure 6.A2b is inscribed. This square is divided into 

(a) (b) 

(c) (d) 

Figure lO.A l Relationship between the sacred cut and the square circle grid. 
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(f) 
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(e) 

(g) 

Figure lO.Al (Continued) 
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four smaller squares, and a central square is highlighted in the upper left­
hand square (Figure 1 0.A1a). This highlighted square represents the central 
square of a SSCS (see Figure 10.4). 

10.A.2 Within the central circle lies a pair of squares rotated at 45 degrees 
with respect to each other (Figure 10.A1b). Figures 10.A1b and 10.A1c show 
that this pair of rotated squares leads again to the SSCS. In Figure 10.A1b 
the central square of the SSCS of Figure lO.Ala is now the comer square 
of a new SSCS. In Figure 1 0.A1 c, the arcs of the four sacred cuts shown in 
Figure 6.2 have been completed to circles showing their proper context. 

10.A.3 In Figure lO.Ald, square abed is exploded outwards to square ABCD, 
and the sacred cut subdivision is replicated at a larger scale. Square ABCD 
is inscribed in a circle, and if this circle is considered to be the central 
circle of another square circle grid of nine circles (as in Figure 6.A2b) ,  this 
process can be repeated to create sacred cut subdivisions at ever larger or 
smaller scales. Figure 10.Ale  represents a hierarchy of three SSCS's. If the 
centermost square of Figure 10.A1e is given the value 1 the sides of the four 
concentric squares have values 1 ,  (J, rl, fl. In Figure 10.Alf, square efgh is 
exploded outwards to EFGH resulting in another sacred cut subdivision. 

10.A.4 The final display (Figure lO.Alg) ,  the Hisano diagram, shows how 
a star octagon is related to squares, circles, and triangles. Within the circle 
are numerous 45 degrees isosceles triangles with hypothenuse to base in the 
ratio 1 :  Ji ,  in contrast to the numerous 3 ,  4, 5 -right triangles of the Brunes 
star (see Chapter 9) .  The diagonals also cut each other in the ratio 1 : 0. The 
sacred cut subdivision is sitting in the midst of this diagram. This star is a 
testament to the geometric integrity of the Roman system of proportions. 
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Measure in Megalithic Britain 

On Apollo's birth: The swans, the god's prophetic singers, 
circled Delos seven times. These Muse's birds sang at the delivery bed 

like bards. Because of this, the child later bound seven strings to his lyre. 

Callimachus 

1 1. 1  Introduction 

There is a difference of opinion as to whether ancient cultures did or 
did not possess standard measures. Some students of ancient cultures feel 
that in place of a standard measure each construction site was developed 
independently, using pure geometry as a guide to planning and construction. 
Furthermore, many archaeologists simply feel that ancient cultures did not 
possess the level of social organization required to institutionalize a standard 
measure. However, there is evidence that in Megalithic Britain, as far back 
as 3200 B.C. , standard measures may have been used. Anne Macaulay was 
an amateur archeologist who dedicated many years to a study of these 
questions. In this chapter I will report some of her discoveries and conjectures 
based on the measurements by the British engineer Alexander Thorn of more 
than 200 of the approximately 900 megalithic circles throughout England, 
Scotland, Wales, Ireland, and Brittany (cf. [Bur] , [Mac], [Lin] , [Tho-Tl] ,  
[Thorn] and [Tho-T2] ) . It was Thorn's belief that one of the functions of 
the circles was to serve as astronomical observatories. 

235 
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1 1.2 A Standard Measure 

What is the origin of the idea of the standard measure? The archaeologist, 
Colin Renfrew [Ren] has traced the movement of the first farmers from what 
is now modem Turkey and the fertile crescent both East and Westwards from 
before 6000 B.C. As a result, we now know that the first farmers to arrive 
in Britain in about 4500 B.C. were Indo European. Renfrew believes these 
first farmers brought with them a farming package consisting of grain; domestic 
animals and pottery. Anne Macaulay conjectures that we owe the origin of 
measure to these ancient farming communities. Farmers had to know how 
much grain when sown in the earth would produce enough surplus to feed 
their people. From this emerged the bushel type of measure. In order to know 
how much land to sow grain upon, they produced a measuring rod or 
yardstick. In order to make the comers of their fields square, the 3 ,  4, 
5 -triangle was used to produce a right angle. Thus was born another farming 
package consisting of a measuring rod, a bushel type of measure, and the 
knowledge of the 3, 4, 5 -triangle that enabled local hunter-gatherers to 
develop the skills to cultivate grain. 

A proof of the Pythagorean theorem for a 3 ,  4, 5 -triangle survives from the 
Han period (c. 200 B.C. -200 A.D.) in China, shown in Figure 1 1 . 1  [Nee]. As 
you can see, this proof is based on the division of the side of a square of 
length 7 into 3 and 4 unit subdivisions. I leave the visual proof to the reader. 

/ """' 
J ........ I'.. 

v � 
v I """' / ........ " v 

" v 
Figure 1 1 .1  The proof of the Pythagorean Theorem in Chou Pei Suan Ching. 
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Not only is it likely that people of Megalithic Britain possessed 
Macaulay's farming package, but, based on the work of Thorn, they may 
have possessed a standard linear measure. Macaulay conjectures that word 
about the standard measure was spread through England and Scotland by 
Bards who wandered through the countryside bringing news, singing songs 
and telling stories. She bases this on the discoveries by archaeologists of a 
few Neolithic and Bronze Age British burial sites each containing a horned 
ox-skull (no reference given). By studying ancient depictions of citharas, an 
early form of the ancient lyre and modern guitar, Macaulay surmises that 
they were constructed upon horned ox-skulls covered by a wooden casing 
with the horns forming the arms of the lyre. Macaulay feels that the discovery 
of ox-skulls in the ancient British burials suggests the possibility that they 
were the tombs of Bards buried along with their lyres. 

The people of Megalithic Britain were seafarers. At first, they settled in 
France, then colonized all the islands around Britain - Man, the Inner and 
Outer Hebrides, Orkney, and Shetland, etc. Macaulay hypothesizes that 
they eventually established commerce with ancient Greece as tin traders. 
Although there is only circumstantial evidence to confirm Macaulay's 
hypothesis, the coincidence between a recent discovery of a Greek standard 
measure and the work of Thorn in measuring megalithic stone circles and 
grids adds some credibility to this conjecture. 

1 1 .3 Megalithic British and Greek Measures Compared 

Macaulay has shown that there is a strong possibility that the Greek 
fathom was identical to the Megalithic British rod. The megalithic yard (my), 
32.64 inches, is i of a megalithic rod (mr), and is similar to the ancient Indus 
short yard, 33 inches, and the Sumerian shusti, 33 inches. 

Based on his exploration of megalithic sites throughout England, 
Scotland, and Brittany, Thorn hypothesized that the spacing of the stones 
was related to integral numbers or simple fractions of megalithic rods, 
megalithic yards, or megalithic feet to be described below. As a result of 
these measurements, he conjectured that the megalithic rod was 2.072 meters 
( 6.80 feet) in length. This resulted in a perfect match with the length of 
the Greek fathom reported in 1 98 1  by E. Fernie [Fer] in the form of a 
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Figure 1 1 .2 Met Relief Michaelis: A sculptured metrological stone illustrating the measure of 
the Greek fathom and the Greek foot. Courtesy of the Ashmolean Museum, Oxford, England. 

sculptured Metrological stone in the Ashmoleam Museum, Oxford, thought 
to come from Samos from before 400 B.C. shown in Figure 1 1 .2. As you can 
see, this artifact also represents one of several the Greek foot measures (see 
Appendix l l .A) as � of a Greek fathom. I shall refer to this measurement 
as a megalithic foot (mf). It is important to note that Thorn died in 1978 
before the discovery of the Greek measure and so he could not have been 
influenced by it. 

1 1.4 Statistical Studies of Megalithic Measure 

Thorn's original measurements were reported in a paper written in 1955. 
He subsequently re-approached the question of a standard measure with 
new measurements, as reported in a paper written in 1 962. Douglas 
Heggie [Heg] has made an extensive survey of the statistical methods used 
to examine Thorn's measurements. Heggie states, 

"Thorn [Tho] presented his measurements of the diameters of 
the stone circles in a histogram. He discovered peaks at about 
22, 44, 55 ,  and 66 feet. This observation immediately suggests 
that many of the diameters lie close to multiples of some unit. 
Thus we are led to frame a quantum hypothesis that the diameters 
were intended to be multiples of 1 1  feet. Actually Thorn settled 
on a unit or quantum of about 5 ! feet (actually 5 .435 feet), 
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and since it is likely that it is the radius of a circle which would 
be measured out, Thorn thought that a unit of about 2. 72 feet 
was in use, and this was subsequently called the megalithic yard." 

Thorn also measured the perimeters of the stone circles and found that 
units of about 2 1_- megalithic yards (2.072 meters) were most prevalent. He 
called this unit the megalithic rod. 

The object of statistical studies of Thorn's work has been to test the 
significance of the quantum hypothesis. If the hypothesis was correct, one 
would expect that measurements of diameters would exhibit only small 
deviations from the nearest multiple of 5.435 feet. 

The problem of testing the null hypothesis was undertaken by several 
statisticians, most notably, S.R. Broadbent and D.G. KendalL Details of these 
studies are described in Megalithic Science [Heg]. Although Thorn derived his 
measure for the megalithic yard from his earlier data, he returned again to 
the megalithic yard in his later paper, and he reported measurements of many 
new sites. If the old unit of 5 .435 feet is applied to the new data, since this 
value cannot have been influenced by the new data, a statistical test devised 
by Broadbent was most applicable. Heggie states: 

"Omitting sites already discussed in 1955, or those with diameters 
noted as being particularly uncertain, we obtain a probability 
level far below 0.1 %. This is a highly significant result, for it 
implies that such good agreement with Thorn's unit would 
occur only once in many thousands of samples of random data." 

Heggie feels that as striking as these results are, there are several reasons 
why they may not be as decisive as they seem. One of these is the suspicion 
that the choice of geometry open to Thorn allowed the operation of a quite 
unintentional bias in favor of the megalithic yard. One way around this bias 
would be to analyze the results of other workers who have measured the 
megalithic sites but did not use Thorn's special geometries. Unfortunately, 
there is sparse data of this kind yielding inconclusive results, and most of 
the support for Thorn's theory comes from his own measured diameters. 
According to Heggie, "This situation is unlikely to change until other 
investigators summon the energy to survey comparable numbers of sites with 
comparable care". 
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1 1.5 Measurements at Mid Clyth 

One of the problems with measuring the diameter of a stone circle is that 
one is limited to measuring the distance between two stones. A small error 
in the placement of one of the stones invalidates the measurement. On the 
other hand, Thorn's measurement of a fan of stone rows at Mid Clyth, 
Caithness in 1964, shown in Figure 1 1 .3 ,  admirably satisfies statistical tests 
and confirms Thorn's hypothesis of the megalithic rod being 2.072 meters. 
The geometrical pattern Thorn arrived at for this site resembles the lines 
of latitude and longitude on a map. To measure this site, one chooses an 
arbitrary latitude line, and then measures the distances in the direction of 
the near-vertical lines of longitude of all stones from this line of latitude. If 
these distances lie close to multiples of some unit, in a statistically significant 
sense, then it may be inferred that the stones lie significantly close to 
evenly spaced lines of latitude. Using Broadbent's second paper, Thorn 
found overwhelming support for a unit of 7 .  743 feet at a probability level 
much less than 1%. This unit happens to be close to 2? my. 

Heggie found it a pity that the unit of 27° relates to the megalithic yard 
by such an awkward ratio. However, his study was made before the discovery 
of the ancient Greek measures, and this unit can now be appreciated in 
light of the 1981  discovery by Fernie of the Greek foot = megalithic foot. 
Since the megalithic foot is � of the megalithic rod, it then follows that, 
the Greek foot is � of the Greek fathom, which equals the megalithic rod. 
It then follows that, 

20 2 mr 8 -myX-- = -mr , 
7 5 my 7 

8 
- mr = 8 Greek feet . 
7 

Therefore Mid Clyth divides equally into 1 7  lengths, each measuring 8 Greek 
feet. Macaulay has found 42 examples among Thorn's data in which a 
quantum, equal to the megalithic foot equated to the Greek foot, was used 
for measurement. 

Macaulay points out that the Megalithic rod = Greek fathom continued 
to be used for church dimensions in northwest Europe (but not in Italy) up 
until the latest Gothic churches (c. 1500 A.D. ) . It was a great surprise 
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THE STONE ROWS AND THEIR USE 
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Figure 1 1 .3 Thorn's measurements of a fan of stone rows at Mid Clyth. 

to the team of Macaulay, Gordon Strachan, and Fred Robertson, that 
measurements of the base lines of the Chartes Cathedral and St. Georges, 
Windsor were integral numbers of megalithic rods. It was only after 
discovering Fernie's article on the equivalence of the megalithic rod and 
the Greek fathom that this discovery began to make sense. 
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1 1 .6 The Stone Circles 

Next we examine the geometry of the stone circles. Burl [Bur] estimates 
that of the 900 rings still standing in Britain, there are about 600 circles, 
150 flattened circles, 100 ellipses, and 50 eggs. Some were single circles and 
many others were either two or three concentric circles (cf. [Mac] , [Cri] , 
[Tho]) . Unfortunately, in the 4000 to 5000 years since these sites were erected 
there has been much damage, mainly since the Reformation, when most of 
the sites in Skye, lana, and much of the west coast of Scotland were destroyed 
by zealous reformers. In addition, in the last 200 years farmers have used the 
sites as quarries to get stones for building. 

Figure 1 1 .4 shows the geometry that comes from sites with three 
concentric circles. These are mainly Clava cairns and other similar burial 
sites, as well as a few other sacred sites. The central area was used for burials 
or deposition of cremated remains. The shaded area was built up and filled 
with stones and outside this is the functional area marked usually with a 
few tall standing stones. 

In many instances, measurements of one of the pair of diameters of two 
concentric circles were found to be integral numbers of a basic unit related 
to megalithic yards, rods, or feet. In making his measurements, Thorn assumed 
that the center of a stone was placed over the measured point, and he 
determined the measurement by measuring the distance to the four 
extremities of the stone as seen from the center of the circle and averaging 

/I Main circle 

I Inner circle 

Figure 1 1 .4 Three concentric rings typical of megalithic stone circles. 
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N 

Figure l l .S A ten-pointed star establishes rhe geometry of the stone circles ar Farr West 
(Tordarroch). 

these values. If a site was so badly in ruins that he could not determine the 
radius accurately, it is marked with its error, e.g., ± 3 inches. Some of the 
stones were rather large, weighing as much as 30 tons. 

At the beginning of her investigation, Macaulay put a piece of tracing 
paper over a plan and drew tangents to the central circle from the main circle. 
To her surprise, a perfect star pentagon or pentagram emerged and with the 
next one, a 14-pointed star. It became clear to her that these sites required 
a proper geometrical framework. Macaulay has used Thorn's measurements 
to infer a method of constructing the concentric circles by superimposing 
star polygons in the form of stretched strings. Stretching the string between 
equidistant points on the outer circle defines points of tangency or 
intersection on the inner circle, as shown in Figure 11.5 for a ten-pointed star 
at Farr West. Thorn's measurement of the diameter of the outer circle was 
1 13 .2 feet, and of the inner circle was 66.8 feet. Macaulay determined the 
ratio of outer to inner diameter by geometry and trigonometry and then found 
that, given an outer diameter of 1 13.2 feet, the diameter of the inner circle to 
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Figure 1 1 .6 A pentagram and a hexagram establish the geometry of the stone circles at Milton 
of Clava. 

be 66.54 feet, an error of 3 . 12  inches. An error this small is rather impressive 
given the size of some of the stones. Appendix 1 1 .B shows how to make this 
computation. 

A particularly interesting diagram shown in Figure 1 1 .6, equally accurate 
in its geometry, depicts Milton of Clava, which combines a star hexagon 
(hexagram) and star pentagon (pentagram) in a single diagram. The position 
of the stones is defined by the intersection of edges of the star polygons (see 
Appendix 1 1 .B). 

It appears as though there was a starting dimension in each of the 
megalithic sites established by marking of integral multiples of a basic unit, 
after which the monument was completed using pure geometry. For example, 
Macaulay has discovered several sites spread widely throughout England 
in which the diameter of the stone circles measure exactly 5 1  units in 
units of Greek feet, megalithic yards, megalithic rods, or simple fractions 
of these measures. The size of the unit determines the overall dimensions 
of the site. The dimension of 5 1  units is suggestive of a circle broken 
into either 7 or 14  sectors since a chord of 22 feet then approximately 
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Table 1 1. 1  Measurements at Riverness. 

Thorn's measurements 

Diameter of outer circle 
Diameter of main circle 

69.1 '  = 35.04 my 
29.5' = 10.84 my 

A 

4 ACB 25.5" 
4 AOB 51.11" 

Calculated 

69.36' = 5 1  my/z 
29.92' = 22 my/z 

Error 

3 . 1 2" 

5" 

Figure 1 1 .7 A diameter of 5 1  units and a chord of 22 units divides the circumference of a 
circle into seven equal parts. 

spans t of the circle. In Figure 1 1 .7 the diameter and chord are placed in 
a semicircle to form a right triangle in which the chord subtends an arc of 
5 1 . 1 1 degrees on the circle which differs from 3�0 degrees by 0.6%. I have 
used a geometric theorem which states that the central angle (< AOB) of 
a circle equals twice the value of the inscribed angle ( < ACB) that sub tends 
the same arc. As a corollary, it follows that every triangle inscribed in a 
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semicircle is a right triangle. If the third side of the right triangle inscribed 
in the semicircle equals 46 then the Pythagorean theorem is approximately 
satisfied: 

(Several Pythagorean relationships, off by 1 ,  were noted by Thorn.) Marking 
the chord of length 46 units on the circumference of the circle results 
in a 1 4  pointed star with every fifth point connected { 1i} . In this way the 
outer circle could be constructed by subdividing the circumference rather 
than from its center. Since the center of the circle may have been considered 
to be a sacred space, entry to it may have been forbidden. Table 1 1 . 1  and 
Figure 1 1 .8 shows how the Riverness site, with a diameter of 5 1  7 
(the unit of measurement is 1 megalithic yard, i.e., �Y ) , may have been 
constructed in this way. 

N 

Figure 1 1.8 A 14-pointed star recreates the geometry of the stone circles at Riverness (Kinchyle 
of Dores). 
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Macaulay has also found other stone circles with a diameter of 13 units 
(Greek feet, megalithic yards, megalithic rods, etc. ) and chord 5 units, based 
on a Pythagorean triple of 13 ,  1 2 ,  5 which divides the circle in a similar 
manner into 8 equal sectors to within 0.5%. Yet other circles have diameter 
and chord lengths of 3 7 units and 20 respectively, which divide the circle into 
1 1  equal parts, and diameter of 14 and chord of 9 which divides the circle into 
eneagrams (nine-pointed stars) . In each of these circles, the diameter of the 
inner circle is consistent with a star related to the given diameter. It is likely 
that other diameter-chord pairs were also used. However further research is 
needed to uncover them. 

Since the relationship between circle diameter, chord length, and angle 
requires a sophisticated understanding of geometry and trigonometry it 
remains a mystery as to how ancient people gained knowledge of these 
concepts. However, it appears as though they used a combination of 
measurement and pure geometry to construct the stone circles. Macaulay 
believes that the star polygons may not have been used for construction 
purposes but had some unknown significance to the Megalithic British. 

1 1.7 Flattened Circles and the Golden Mean 

There are estimated to be about 150 remains of flattened circles spread widely 
about mainland Britain. Thorn determined that there were four types of 
flattened circles which he identified as Types A, B, modified B and D. Of 
the four types, modified type B shown in Figure 1 1 .9 is the most prevalent. 
Macaulay's analysis of Thorn's diagrams indicates that all of the flattened 
circles can be related to the pentagram which in tum is related to the golden 
mean (see Section 20.4) .  The following construction of the Type B modified 
flattened circle involves the golden mean directly: 

Step 1 .  Begin with a series of four circles, as shown in Figure 1 1 . 1  0, of 
diameter 1 unit from a square grid of circles (see Appendix 6.A). 

Step 2. By the Pythagorean theorem, AC = �12 + ( t)2 = jf while CD = { .  
Therefore AD = l+[S which is the golden mean r. 
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A 

Figure 1 1 .9 Flattened circle modified Type B. 

B 

M 

A 
flattened circle, modified type B 

1 MC I MN = 4,AB I MN = 0.8091 

Perimeter I MN = 2.8746 

N 

Figure 1 1 .10 Anne Macaulay's reconstruction of flattened circle modified Type B. 

Step 3. Swing an arc from D to E with point of the compass at A Points F 
and G on this arc along with A form isosceles triangle AFG with side AF 
and base FG in the ratio -r: l ,  a golden triangle (see Section 20.4). 

Step 4 .  The ratio of �� = } = 0.809 . . .  in agreement with Thorn's 
measurement (see Figure 1 1 .9 ) .  Macaulay uses the golden triangle to 
construct a pentagram within the flattened circle as shown in circle at 
Whitcasdes, Dumfrieshire (6 miles from Lockerbie, Scotland) in Figure 1 1 . 1 1 . 
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Figure 1 1 . 1 1 The flattened circle at Whitcastle, Dumfrieshire with inscribed pentagram. 

Table 1 1 .2 Measurents at Whitcastle. 

Thom's Measurements 

Half the length of main diameter t MN 

Short diameter (AB) 

Error 

34 MY exact 

55 MY 0.43" 

Macaulay conjectures that the Megalithic geometers made one 
measurement exactly using Thorn's measurements, and that in every case that 
she has studied, this measurement is one of the Fibonacci numbers from the 
F-series: 1 ,  2, 3 ,  5 ,  8, 13 ,  2 1 ,  34, 55, . . . .  The second measurement is then 
approximated by the next Fibonacci number in the series since ratio of 
successive numbers from the F-series are approximately r: 1 (see Section 20.2) .  
The results for Whitcastle are given in Table 1 1 .2. 

These are also the measurements of the base FG of the golden triangle 
and its side AF. Macaulay found that in almost all of the sites corresponding 
to flattened circles, a wide array of Fibonacci pairs were used as the side and 
diagonals of the pentagram. 

Macaulay has conjectured that the British system of modem linear 
measure may trace its origin to megalithic metrology. Appendix 1 1 .A shows 
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that the imperial foot (the foot measure commonly used in Britain and the 
United States) is derived from the equivalence between r mr and 1 1  imperial 
feet and that all units of British measure are multiples of 1 1  feet. If Macaulay's 
conjectures are correct, it suggests that knowledge of Fibonacci numbers may 
have existed in megalithic times. 

1 1 .8 Historical Perspective 

Macaulay believes that the Megalithic British became one of several peoples 
that settled Greece and its surrounding islands during the several centuries 
prior to the classical Greek period. The traditional view is that Greek 
civilization was the result of a cultural mixture that followed a conquest of 
an earlier pre-Hellenic people by Indo-European people from the North. 
A competing theory, put forth by Martin Bernal [Bern] , suggests that the 
primitive tribes that inhabited pre-Hellenic Greece were civilized by Egyptian 
and Phoenician settlers. Bernal uses results of recent archaeology to account 
for the fact that Greek is fundamentally an Indo-European language. 

If Thorn's hypothesis of a standard measure in Megalithic Britain is 
correct, and if this measure precisely matches the standard Greek measure, 
then we have stumbled on a great mystery. How did the Greek measure of 
400 B.C. derive from the megalithic measure which began well before 
3500 B.C. and continued to the end of the megalithic period around 
1 200 B.C. ? What would have brought people from Megalithic Britain to 
the Eastern Mediterranean around 2 1 00 B.C. ? Macaulay has found much 
evidence from historical and archaeological records, archaeo-astronomy, 
mythology, and studies of musical instruments to support her theories about 
the interaction between Megalithic British and classical Greek cultures. 

Macaulay has hypothesized that the Megalithic British became involved 
in the tin trade. Tin, though very scarce, when combined with copper formed 
the bronze pertinent to the development of the European Bronze Age. There 
was an unreliable source of tin near Poland, and an Eastern source near the 
Gobi desert which was extremely expensive as it involved an overland 
journey of about 2000 miles. There was also only a minimum amount of tin 
in Brittany which was not worked until very much later. Cornwall, England 
has been shown by archaeologists to have been an important center of tin 
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mmmg from at least 2 100 B.C. , somewhat after the beginning of the 
European Bronze age. Tin was continuously mined there until only a few 
years ago [PenH]. Thus the British, who were known to be good sailors and 
tradesmen, began to meet this demand. 

According to Macaulay, two major calamities, namely the eruption of 
Thera on the Island of Crete around 1628 B.C. and of Mount Hekla in 
Iceland in 1 159  B.C., may have resulted in climatic disturbances that caused 
cultural upheavals in the Eastern Mediterranean region. This may have 
enabled proto-Greek settlers from Britain and elsewhere to take political 
control of mainland Greece. Whatever the truth is, the Iliad (c. 1 250) reflects 
this unsettled and bellicose period. 

The story of the Aratus star globe [Roy] lends further support to the 
idea of early British-Greek contact. Eudoxus, a Greek who lived from 409-
356 B.C., traveled to Egypt where he obtained an old star globe from about 
2000 B.C. (± 200) showing the constellations. What is of interest to us is 
that, according to Roy, the globe had representations of Greek mythology 
and that the latitude of the observations were at about 36 degrees North 
(± 1 .5 degrees) , the latitude of Gibraltar somewhat further south than Greece. 
But 2000 B.C. was long before the origins of classical Greek culture. Is it 
possible that proto-Greeks from Megalithic Britain were in the Mediterranean 
around 2000 B.C. using the same mythological symbols? 

Eudoxus described the globe in detail in two books. These works did not 
survive, but a poet named Aratus recorded Eudoxus's findings in a famous 
poem, "Phaenomena" which exists in English translation [Mai]. In the 
second century B.C. Hipparchus discovered that the account of the old star 
globe as told by Aratus did not describe the constellations observed in his 
time. He realized that this must have been due to a shifting of the equinoxes, 
and he did a creditable approximation to the 26,000 year cycle governing 
this precession (see also Section 1 .4 and Example 3.6.2). 

Macaulay has also found clues from mythology that add credence to 
her theory of Megalithic British-Greek connections. Apollo is connected 
in Greek mythology with music and the lyre. The earliest lyres of the 
Mycenean and Minoan periods period had swans carved on the arm terminals 
[Ahl] . So Apollo's lyre is connected with swans. Taking the swan and lyre 
to be the constellations Cygnus and Lyra - Lyra being very close to Cygnus 
in the sky - a Greek myth has Zeus approach his future bride, Lata, in the 



252 Beyond Measure 

form of a swan (Lato being the mother of Apollo). Macaulay has found 
some evidence to suggest that Lada was the original "Earth Mother" of the 
neolithic era during which agriculture was developing. She conjectures that 
this "Great Lady" of the farmers, was the same person as Lato, and that later 
this name was misspelled as Leda, featured in swan myths. 

If we trace the movement of Cygnus and Lyra as seen from Stonehenge 
at around 3400 B.C. , we find that they move in circumpolar circles, tangent 
to the horizon. Note that recent dating of Stonehenge places its construction 
at around 3 100 B.C. However Macaulay believes that a cruder version may 
have existed as far back as 3400 B.C. I checked this bit of archeoastronomy 
at the Newark planetarium. By setting the heavens back to megalthic and 
classical Greek times, I was able to verify this story. 

Contrast this myth which makes sense when it refers to Megalithic 
Britain with another myth dating to Minoan times. In this myth Apollo 
was supposed to leave Delphi in the autumn for the land of the Hyperboreans, 
not returning till the spring. Hyperborea, meaning "beyond the North Wind" 
was to the Greeks a vague area in the north inhabited by unknown peoples -
it happens that in ancient Greece these constellations were not visible in 
the night sky during winter, lying below the northern horizon. So Apollo's 
departure to and return from Hyperborea in the autumn and spring, 
respectively, coincide with the disappearance and reappearance of Cygnus 
and Lyra in the Greek night sky. In other words, Cygnus and Lyra were 
visible through the entire year in Megalithic Britain but only part of the 
year in Greece. Therefore the first Greek myth makes sense at the location 
of Megalithic Britain while the second appears to refer to Greece, but at a 
later date. 

Apollo is also associated with a dolphin, implying navigational skills. 
Legend has it that Apollo's first act upon arriving at Delphi was to slay the 
dragon or python only to reinstate it as the Pythia. Macaulay has suggested 
an explanation to this puzzling myth. If the myth of Apollo had originated 
in Megalithic Britain, at that time the pole star was in the constellation of 
Draco the dragon. However, at the time of the settlement of classical Greece, 
Draco was no longer usable as a pole star due to the precession of the 
equinoxes (see Seeton 1 .4 ) . It is therefore plausible that a remnant of the 
importance of this no longer usable signpost of navigation was retained as 
the name of the Sybil at Delphi. 
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Figure 1 1 . 12  A full set of megalithic "Platonic 
solids". They are examples of megalithic carved 
stones found throughout England and Scotland. 

Other hints are found in the association by Greek legend of amber with 
Apollo's tears [Ahl] . In ancient times amber was found in abundance near 
Glastonbury, which is near the site of Stonehenge. Finally, Figure 1 1 . 1 2  
illustrates Megalithic carved stones in the form of the five Platonic solids as 
evidence of the interest of ancient people in geometry and stereometry (the 
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study of spherical forms for the purpose of astronomy). At least 400 of these 
stones are in existence [Cri]. 

1 1.9 Conclusion 

The work of Alexander Thorn raises the possibility that standard measure 
may have been used in megalithic Britain. Due to discoveries of Fernie, 
we know that the linear measures in Megalithic Britain and ancient Greece 
closely agreed. This invites hypotheses as to possible historical linkages 
between megalithic Britain and ancient Greece. 

Appendix l l .A 

Anne Macaulay conjectured that standard units of a megalithic rod (mr) 
equal to 6.8 British imperial feet and a unit a "foot" equal to t of a 
megalithic rod or 0.97 1  British imperial feet ( 296 mm) were used in 
Megalithic Britain. Since these measurements were found on the metrological 
stone (see Figure 1 1 .2 ) ,  she saw this as a connection between Megalithic 
Britain and ancient Greece. However, according to the archaeological record 
there was no standard unit of a "foot" in ancient Greece. The typical foot 
of Attica, measuring 293-295 mm was called the Attic-Ionic foot (sometimes 
called the Solonic foot and also the Cycladic foot) [Bul]. The foot on the 
metrological stone measures 296 mm, slightly larger than the Attic foot. 
Still other units of a foot were used for temple construction. For example, 
297 mm is the foot length used in the Temple of Apollo in Delos while 
328 mm was used for the Great Temple of Athena at Paestrum and the 
Erechtheion in Athens, and 343 mm was the foot length Anne Bulckens 
used to describe the proportional system of the Parthenon. Bulckens feels 
that the Attic foot of 294 mm was scaled up a factor of i ,  the two integers 

assigned to Athena, to get the Parthenon foot, i.e., 294 x i = 343. The 
latter value differs from the Parthenon foot (308.76 mm) hypothesized by 
Francis Cranmer Penrose whose measurements of the Parthenon made in 
1 888 are considered the most reliable. These values of the Greek foot are 
summarized in Table l l .Al .  
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Table l l .Al Foot measurements in classical Greece. 

Foot Type Measure in mm Measure in Brit. Imp. Feet 

Attic-Ionic 293-295 

Metrological Stone 296 0.971  

Temple at  Delos 297 0.974 

Temple of Athena at Paestrum 328 1 .076 

Erechtheion 328 1 .076 

Parthenon (Bulckens) 343 1 . 125  

Parthenon (Penrose) 308.77 0.999 

Brit. Imp. Foot 304.84 

Macaulay felt that the metrological connection between Megalithic 
Britain and classical Greece are made more vivid if one accepts her 
hypothesis that many of the stone circles were measured out using units 
based on the Fibonacci sequence. If one uses the best Fibonacci 
approximation to the golden mean from her analysis of the stone circles, 
't = ;! , then 't mr is equivalent, using 6.8 Brit. Imp. feet/mr, to 1 1  Brit. Imp. 
feet i.e., 

55 
rx6.8 "' -x6.8 = 1 1  

34 

Therefore ;1 mr = 1 Brit. Imp. foot. Also after discovering the Erechtheion 

foot of 328 mm in 1890, Dorpfeld [deW] concluded that a foot varying from 
326 - 328 mm was used for the design and construction of sacred buildings. 
While not universal for Greek sacred structures, this class of structures 

adheres to a .J3 yardstick in that, 

.J3 
- mr = 1 .07 1 Brit. Imp. feet = 326 mm . 
1 1  

By this analysis 1 1  imperial feet emerges as a natural standard of 
measurement. This finds validation in the fol lowing units of Old English 
land and sea measures all divisible by 1 1  illustrated in Table 1 1 .A2. 
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Table l l .A2 Old English Measurements. 

3 feet = 1 yard 
2 rods, poles or perches = 1 1  yards 
1 chain = 4 rods ( 1 1  X 2 yards) 
1 furlong = 40 poles ( 1 1  X 20 yards) 
1 mile = 8 furlongs ( 1 1 x 1 60 yards) 
1 nautical mile = 1870 yards ( 1 1  X 1 70 yards) 

It is also curious that 1 870, the number of yards in a nautical mile, factors 
into 34 X 55, the highest Fibonacci pair commonly used in Megalithic 
Britain. 

Macaulay hypothesized that while the small metrological foot 
(0.971  Brit. Imp. Feet) is found throughout megalithic measurements, the 
imperial foot may have been used in megalithic times to measure fields 
considered sacred areas where the Earth goddess produced grain to feed 
mankind. Thus, this measure which was adopted in Medieval times in 
England as the basis of all types of standard measurement may have had 
its origin in Megalithic Britain. It is a mystery as to how this yardstick 
disappeared after Megalithic times and then was reintroduced to England at 
a later date. 

Appendix l l .B The Geometry of the Stone Circles 

We shall compute, 

(a) the vertex angle of a regular polygon or star polygon; 
(b) the ratio of diameters of the circumscribed and inscribed circles of the 

polygon; 
(c) the ratio of diameters of the circumscribed circle and the circle that 

goes through the intersection points of the edges of a star polygon. 

We will then apply these computations to check Thorn's measurements 
of Farr West and Milton of Clava. 
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Figure l l .B 1 

R. 

Ds Rs . 1 
- = - = sm 30 = ­Dt RL 2 

(b) 

First consider the equilateral triangle shown in Figure 1 l .Bl . Its vertices 
are distributed evenly around the circumference of the circumscribed circle, 
the central angle between successive points being 3�0 = 120 degrees. 

Note that the radius of the inscribed circle is perpendicular to a side of 
the triangle tangent to it. Two such radii and two tangent sides form a 
quadrilateral from which the vertex angle, x, of the triangle can be computed 
as follows: 

90 + 90 + 1 20 + x = 360 degrees or x = 60 degrees . 

In Figure l l .B 1 b the radius of the circumscribing circle bisects angle x. 
Therefore the ratio, �� = g� = sin 30 = 1 where Rs and Ds are the radius and 
diameter of the inscribed circle and RL and DL are the radius and diameter of 
the circumscribed circle. 

Next consider the star pentagon shown in Figure l l .B2a. This star 
pentagon is referred to as {i} because it has five vertices evenly placed 
around the circumscribing circle, and each edge connects every second 
vertex. The angle between adjacent vertices is 3�0 = 72 degrees. Using the 
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(a) 

Figure l l .BZ 

Ds Rs · x/2 - = - = Sin DL RL 
(b) 

same reasoning as for the triangle, we find that to determine the vertex 
angle, x, 

90 + 90 + 144 + x = 360 or x = 36 degree . 

Likewise, g� = sin 1 8  where 1 8  degrees is half of the vertex angle. 
In general, to find the vertex angle x of an {n, p} star polygon (a polygon 

with n vertices connecting every p-th vertex by an edge) ,  the computation 
is carried out as follows: 

or solving for x, 

90 + 90 + 360 E. + X = 360 
n 

180(n - 2p) X = -----'--
n 

( l l .Bl ) 

and referring to Figure 1 1-B2b and using the trigonometry of a right triangle, 

Ds . x 
- = stn - . 
DL 2 ( l l .B2) 
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(a) 

Figure l l.B3 

Ds = Rs_ sin x/2 
DL RL- sm y 

(b) 

Figure l l .B3 shows a circle going through the five points of intersection 
of a star pentagon. The vertex angle x is computed from Equation ( l l .B l ) .  
However, Rs and Ro are no longer sides of a right triangle, so to compute their 
ratio requires use of the law of sines on Figure l l .B3b. Here x is half the 
central angle of the pentagon, or 36 degrees while } = 18  degrees as before. 
Therefore y = 1 80 - 1 8  - 54 = 54 degrees. Using the law of sines, 

- = stn - stn y =-- = 0.381 9 .  Ds ( ·  x )0 ·  sin 1 8  
DL 2 sin 54 ( l l .B3 ) 

Milton of Clava. Thorn's measurment of the diameter of the middle circle is 
57.8 feet (8.5 MR, where MR stands for megalithic rods) .  The inner circle 
is 22.0 feet. Therefore, 

Ds =
�

= 0.380 1 .  
DL 5 7.8 

Comparing this with Equation ( l l .B3 ) gives an error of 0.4 7%. 
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The one measurement of the diameter of the outer circle is 100 feet. Use 
Equations ( 1 1 .B2) and ( 1 1 .B3) to compute g� from geometry and compare it 
with the value determined from the measurements, 

Ds = 5 7.8 = 0.5 78 .  DL 1 00 

Farr West. Thorn's measurement of the outer circle is 1 13.2 feet; of the inner 
circle, 66.8 feet 

By geometry, the star polygon in Figure 1 1 .B4 is { 1�} .  Computing the vertex 
angle, x, using Equation { 1 1 . B 1 ) , 

1 80(10 - 6) x = = 72 degrees. 
10  

Using Equation ( l l .B2 ) ,  

with an error of 0.3%. 

Ds = sin36 = 0.5878 DL 



1 2  
The Flame-Hand Letters of the Hebrew Alphabet 

12 .1  Introduction 

In the beginning of heaven and earth there were no words, 
Words come out of the womb of matter. 

Lao-Tse 

In Part One, I presented several examples of ways in which numbers and 
geometry may have been used by ancient civilizations. I also described 
Kepler's attempt to create a planetary system from the music of the spheres 
and Theodor Schwenk's and Lawrence Edwards' work to find unifying 
principles that generate natural forms. Projective geometry, harmonic law, 
systems of proportion, the Megalithic stone circles, and the designs found 
in the pavements of the Laurentian Library can be thought of as symbolic 
languages in their ability to express relationships found in art, architecture, 
music, design, and patterns in nature. 

In Part Two I take a more formal approach to number and geometry 
and describe how certain systems evolve by continually feeding back 
information about themselves. I will show that the dynamics of such 
self-referential systems is governed once again by number and geometry. 
I ask the reader to ponder the question as to whether the patterns of 
number and geometry that we observe in the natural world are intrinsic to 
nature or do we subtly project aspects of our own thought processes onto 
the world? 

The ultimate self-referential system is written language. The biologist, 
Lewis Thomas, has commented that written language functions much like 
a genetic code; it serves as a carrier of meaning and culture across the 
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generations. New meanings take the place of the old, yet remnants of the 
original meanings become part of the philological roots. In this chapter, I 
will present a hypothetical geometrical system developed proposed by Stan 
Tenen, an independent researcher, that attempts to shed light on the origin 
of the Hebrew alphabet and the meanings of its symbols [Tenl] .  The letters 
are obtained by projecting a specially, meaningfully-shaped spiral, vortex 
form onto a flat surface from a variety of points of projection. The spiral 
vortex suggests a flame, and the projection source could be a flame, thus my 
reference to the letters as "flame letters". Likewise, this vortex form can 
also be seen as an idealized human hand. When this model hand is placed 
on one's hand, the wearer sees each letter when making particular gestures 
related to the meaning of the name of the letter, thus my reference to this 
model as a "flame-hand" model. 

Tenen's primary interest is in the recovery of what he takes to be an 
underlying geometric metaphor in Western traditions. My focus in this 
chapter is on the geometrical forms and mathematical content. Tenen's 
story and mine share a common interest in the importance of systems 
created from within themselves, or self- referential systems. In the next 
chapter, I will study the mathematics of self-referential systems. 

12.2 The Flame-Hand Letters of the Hebrew Alphabet 

The Hebrew alphabet, or aleph-beth, plays an important role in the 
historical evolution of written language. We attribute the first fully symbolic 
written language to the Semitic tribes dating to 1 500 B.CE. Before this 
time written language took the form of pictorial systems such as Egyptian 
hieroglyphics (which first appeared in 3000 B.CE. ) in which stylized images 
of humans and human implements were interspersed with those of plants, 
birds, and other animals. 

Although the Canaanite/Phoenician ("Old Hebrew") written language 
is entirely symbolic, (every sound-syllable had its own character or letter) , 
it does retain remnants of its pictorial predecessors. For example, aleph 
� (the equivalent of the English "A") is the ancient word for ox (and the 
Canaanite Aleph looks like an ox-head on its side) while mem (the 
equivalent of "M") is the Hebrew word for water and is symbolized by a 
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Table 12.1  Shadowgrams of the 27 Meruba Hebrew letters. 

They are all views of one physical system. 
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Table 12.1 (Continued) 
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series of waves "'1 .  Qof ( the equivalent of "Q") is the word for skull and 
is drawn with a circular top {the "skull") and a vertical descender (the 
"spinal column") Q. 

It was only after the transfer of phonetic writing to Greece with the 
transformation of the aleph-beth into the Greek "alphabet", that progressive 
abstraction of l inguistic meaning reached completion. In his book, The Spell 
of the Sensuous, David Abram [Abr] traces the origins of written language 
and the effect this has had on the way we see the world. 

The system proposed by Stan T enen generates close facsimiles to the 
shapes of the 2 7 letters of the rabbinic form of the Meruba Hebrew alphabet 
shown in Table 12. 1 ,  while at the same time organizing them into a coherent 
pattern of meanings [Ten]. This system is also capable of generating the 
letters of particular forms of the Greek and Arabic alphabets. Ten en 
sees this as evidence of a common thread spanning many ancient systems 
of thought. The Hebrew letters in Table 12 . 1  are shown with English 
correspondences and correlations to the English alphabet (not all are 
phonetic equivalents) .  

It should be stated that Tenen's proposal is historically controversial, 
and while it has begun to be presented for peer review, it would be premature 
to comment on its authenticity. There is little that scholars know for certain 
about the origins of Hebrew letters. Scholars have never been able to fully 
penetrate the meaning of particular sacred books of Jewish mysticism such 
as the Zohar, nor related ancient Sufi texts. Yet Tenen believes that these 
works become precise, unambiguous and meaningful when they are 
interpreted through their inherently geometrical metaphoric imagery. 

It is unlikely that our forefathers understood the geometrical concepts 
that we shall present in the manner in which we understand them. After 
all, they had their own symbolic languages. However, mathematical concepts 
are fundamental and can be understood in many different ways. I shall 
present T enen's work as a kind of mathematical poem or metaphor. It will 
provide us with a model of a system generated from within itself. 

12.3 The Vortex Defining the Living Fruit 

T enen first develops the concept of the life cycle of a living fruit. The 
idealized fruit is modeled by a "dimpled sphere" or torus ( inner tube) whose 
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"Fruit tree yielding fruit whose seed is inside itself' Genesis I, 11  

STEM 

"Sli\R-OF-SEEDS" 
"WOII!B" 

SPIN 
AXIS 

IDEAL "APPLE" 

";ED(S)' ® "SUN" 
IDEALlZED STAR 

"FLAT" TORUS 

SPIN 
1\XIS 

3-TURN VORTEX ON 

THE SURFACE OF AN "APPLE' 

Figure 12.1 Idealized fruit modeled as a dimpled sphere. 

inner radius shrinks to zero, as shown in Figure 1 2 . 1 .  The central sphere 
represents either the "seed-pod" of the current "fruit" or the next generation 
"fruit" nested within the current generation. 

In vertical (stem up, flower down) cross section, the "dimpled sphere" 
or "generic apple" appears as two quasi-ellipses nested against and 
surrounding the central sphere, which appears as a circle sitting over the 
"kissing" point of the two ellipses. The ring of five seeds of the "apple" are 
arranged in a five-pointed star (the seeds in the core of an apple form a 
pentagon). 

A seven-stage dynamic process through which the idealized fruit passes ­
the inherent propensity of the seed to grow - is modeled by considering 

the seed to be "containing" an internal increment (or quantum) of angular 
momentum. This is similar to the idea of spin in elementary particle physics, 
where the particle is considered to carry a quantum of spin in units of 
angular momentum. The seven-stage process unfolds as follows: 

1 )  The potential angular momentum locked into the idealized seed-pod is 
expressed as an "impulse" that ejects the "sprout" from the "seed" as the 
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"fruit-tree" starts to grow. Initially all the angular momentum is expressed 
by the ejection of the "sprout" along its erupting "stem". 

2) Later in the life-cycle of the fruit-tree, when the stem or trunk of the tree 
has reached its maximum extent, the angular momentum - representing 
the l ife-force of the fruit-tree throughout its life -cycle - must be 
transferred into the unfurlment (around the tree-trunk) of the leaves 
and branches of the fruit-tree. 

3 )  The branches sprout buds. 
4) Which give rise to new fruit. 
5 )  From which emerge flowers. 
6)  Still later, near the end of the life -cycle, the angular momentum in the 

volume of the mature fruit must be transferred to the next generation 
of seed (represented by the central sphere) ,  as its flowers decay (and fall 
to the ground, now devoid of life -force and angular momentum) ,  and as 
this new seed (containing the passed-on life-force and increment of 
angular momentum of the life-cycle) is thrown to the wind. 

7 )  The new seed falls to the ground to restart the next life-cycle. 

The Sefer Zohar, quoting Genesis, describes the entire living system as 
a "fruit-tree, yielding fruit, whose seed is in itself". Each generation of fruit, 
in turn, is seen as nested within the previous generation giving rising to the 
recursive sequence: . . .  -acorn-oak-acorn-oak- . . . . We have here the 
quintessential self-referential process in which fruit is both a vessel and 
its contents. (The vessel is modeled as a torus, which as with vortices 
(see Section 1 . 1 1 ) , is a minimal closed system, the first requirement for 
self-reference.)  For example, a smoke ring maintains its integrity in the 
form of a torus. 

The process of unfurlment and spin shown in Figure 1 2.2 is modeled by 
a ribbon with three turns. Since the original seed and the new seed within 
the new whole fruit are identical in their development, except for being a 
generation apart, they can be taken to be the ends of the developmental 
life-cycle strung between them. The ribbon represents the exchange and 
transformation of angular momentum that takes place during the 
seven-stage l ife cycle. This vortex form can also be taken to represent an 
individual. The living spirit of the individual is symbolized by his/her whirling 
motion as in Sufi or Dervish dancing. The philosopher, mathematician, 
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EMBRYONIC FRUIT 

SPIN AXIS v1E'W 
Of VORTEX 

CompU!P.r model of an 

IDEAUZEO FRUIT 

Figure 12.2 Cycle of life of a living fruit. The idealized embryology of a fruit-tree is mapped 

onto an idealfruit.' 

and engineer Arthur Young [Young] has written extensively in his book, 
The Reflexive Universe, about the seven-stage process under which all natural 
forms of the universe unfold. Tenen credits this system, and his fruit tree 
conforms well to it. 

12.4 The Torus 

The torus is the first structure of mathematical importance that we encounter 
in Tenen's proposal. What is a torus? Any circular ( loop) cut made on the 
surface of a sphere divides the sphere into two pieces. However, Figure 12.3 

shows that two loop cuts leave the surface of a torus ( inner tube) in one 

piece and opens the torus up to a period rectangle. Each side of the period 
rectangle is identified with its opposite, since they represent the two loop 
cuts. The two circles that characterize the torus are its meridian and longitwl.e, 

shown in Figure 12.4. 
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Figure 1 2.3 A torus is opened to a period 
rectangle by cutting two loops on its surface. 

Longitude 

Figure 1 2.4 A meridian and longitude on a torus. 

UMBlUC TOROID Showing 7-COfor Map on the 3--Turn Spiral Edge Arthur M. Young's Unique, 3-Turn Splra!VOrte><, 7-Color Map Torus 

Figure 1 2.5 The surface of a torus divides itself naturally into seven regions. 
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In Figure 1 2 .5 ,  due to Arthur Young, we see that the ribbon of 
Figure 1 2 .2 not only defines the structure of the torus but divides its surface 
in a natural way into seven regions. This is the seven-color map of the torus 
which states that a torus can be subdivided into seven regions, each region 
sharing an edge with the other six. If such a map were to be colored so that 
regions sharing an edge have different colors, clearly seven colors are needed. 
{It is well known that any map drawn on a sphere or the plane never 
requires more than four colors.) 

Figure 1 2.6a shows a seven-color map redrawn on a period rectangle. 
Notice how the seven regions continue from the left to the right edge, and 

(a) 

(c) 

(b) 

Figure 12.6 (a) and (b) seven-color map drawn 
as hexagons on a period rectangle; (c) hexagonal 
design on the shell of a turtle. 



Chapter 1 2  The Flame-Hand Letters of the Hebrew Alphabet 2 7 1  

from the top to the bottom edge. Also notice that they are all hexagons 
(see Figure 1 2.6b). Tenen believes that this association of the torus with 
hexagons may lie at the basis of the ancient myths in which the world is 
brought into being on the back of a turtle whose shell is made of hexagons 
(see Figure 1 2.6c).  

1 2.5 The T etrahelix 

A tetrahelix is a spiral column formed by combining a column of tetrahedra 
joined face to face, as shown in Figure 1 2.7. Three continuous spiraling ribs 
can be seen on the surface of the tetrahelix, forming a double helix. 
The tetrahelix can also be imagined to be formed by taking a triangular 
prism (see Figure 1 2.8) and giving it a 1 -turn so that top face is rotated 
1 20 degrees with respect to the bottom face for each 1 1 -tetrahedra. Actually, 
no integral number of tetrahedra results in a top face oriented identical to 

Figure 12.7 A tetrahelix column. 
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22-FACE, 1 /3-UNIT TETRAHELIX WHOSE 3-EDGE·RIBBONS TWIST -120" / TRANSFORMS INTO A 3-LOOP "PRE·KNOr. THE 3-LOOPS OF � THE "PRE·KNOr ARE THE EDGES OF AN UMBILIC TOROID.� , 
t e-·· e---- o---- � . -

; 

. 

. 

'··' · . _ , ./ 
. 

Cross-section of 
tetrahelix is 

triangular 

Cross-section of 
umbilic torus is a 

3-lobed hypocycloid .----

Figure 1 2.8 A triangular prism is twisted into a tetrahelix and then rotated to form an umbilic 
toroid. Thirty three tetrahedra result in a column in which top and bottom faces are rotated 
approximately 360 degree. 

the bottom face. In other words, the tetrahelix is not a periodic structure 
and so the column must be slightly strained to enable the top and bottom 
faces to meet. A tetrahelix with 33 tetrahedra results in a column in which 
top and bottom faces are rotated approximately 360 degrees with respect to 
each other. T enen has shown that the two ends of the 1 -unit tetrahelix 
can then be bent around in a circular arc and joined together to form an 
"umbilic torus". Now the three disjoint spirals on the tetrahelix column 
form one continuous arc with three loops on the umbilic torus that precisely 
defines the edges of the seven color map on the torus (see Figure 1 2.5) .  A 
tetrahelix with 1 1 -tetrahedra can be easily constructed by folding the 
triangular grid shown in Figure 1 2.9 up from the plane. 

Notice that the outline of this folding pattern is a hexagon which can 
also tile the plane, as shown in Figure 1 2 . 10a (see also Figure 1 2.6). Notice 
how the 1 -unit of flattened tetrahelices form the six-around-one pattern 
of the seven-color map that characterizes the surface of a torus. Figure 
12 . 10b shows seven clusters of seven clusters of seven 1 -unit tetrahelices. 
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22-LETTER HEBREW ALPHABET COILED ON 

THE 22-FACES OF A 1/3-UNIT TETRA-HEUX 

22-I..ETTER HEBREW ALPHABET IN TETRA-HEUX ORDER 

FLATTENED 

TETRA-HELIX 

Figure 12.9 Paper folding construction of a tetrahelix with 1 1  tetrahedra. 

We could make groups of seven at higher and higher levels indefinitely. 
The curve along the edge of this figure is called a ''flowsnake" and is named 
after the "snowflake", or Koch curve, to which it is related (see Section 
1 8.5 ) .  The 22 letters of the Hebrew alphabet "seed" this hierarchy. 

When bent around and connected, the 1 1  tetrahedra exhibit 22 external 
faces (see Figure 1 2.9) . Tenen has placed the sequence of 22 letters of the 
Hebrew alphabet (not counting the final letter forms) along these faces in 
alphabetical order. Notice that the letters of the Hebrew alphabet occur in 
sequential order on the hexagonal tiling of Figure 1 2. 1  Ob. In Figure 1 2. 1 1 ,  
the edge of the umbilic torus has been isolated as a string, and Ten en has 
strung all 2 7 sletters of the Hebrew alphabet on the three turns of the string 
with nine letters for each of the three loops. In Figure 1 2. 1 2  the second 
(bet) and last letter (tav) are merged to form the first letter (aleph) so that 
aleph is seen as both "head" and "tail" of the "Oroboros" or "snake that 
eats its tail". 
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(a) 

(b) 

Figure 1 2.10 (a) Seven clusters of seven tetrahelices forming a fractal curve called the 
"flowsnake"; (b) the Hebrew letters superimposed on the hexagonal tiling. 



Chapter 1 2  The Flame-Hand Letters of the Hebrew Alphabet 275 

ENNEAGRAM VIEW of the 3 - Levels lf the HEBREW ALPHABET 

ProjECT 

= t  

Noti ce the Left-Right symmetry on each l evel : 

t! J Tet - Bi nd i ng vs. ALL - Al eph " N  
M H cHet - EnClose \IS. Break OPEN- Bet B :l 

T G Zeyi n - ProjECT vs. ACT-Gimel c 1 
1 F Vav - Multiply vs. Divide·- Dal et D '1 

He- ConnECT E ::'! 

Figure 1 2. 1 1  The 27 1etters of the Hebrew alphabet sequentially strung on the three loops of 

the umbilic torus form an enneagram (nine-sided) view of the three-levels of the Hebrew 

alphabet. 
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Inverted � Finai Zadi 

1 2.6 The Meaning of the Letters 

Figure 1 2 . 1 2  The second letter of the Hebrew 
alphabet (bet) combines with the last letter 
( tav) to form the first lerter (aleph). 

The umbilic torus necklace divides the alphabet naturally into three parts, 
to form a connected enneagon (circular nine-pointed figure).  Each triple of 
letters in the enneagon can be associated with a common meaning but on 
three different levels. The outer level, or level 1 ,  is the archetypal meaning; 
level 2 is inner/spiritual, while level 3 is outer/physical. Also notice in 
Figure 1 2. 1 1  the left-right symmetry at each level. Tenen sees this process 
of moving from "oneness" to "wholeness" as represented by the 2 7 letters 
of the Hebrew alphabet ( including final forms) ;  

Oneness - Aleph, Y od, Qof; 
Distinction - Bet, Kaf, Resh; 
Action - Gimel, Lamed, Shin; 
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Division - Dalet, Mem, T of; 
Connection - Heh, Nun, Kaf-final; 
Multiplication - Vav, Samek, Mem-final; 
Projection - Zayin, A yin, Nun-final; 
Encompassment - Chet, Peh, Peh-final; 
Wholeness - T et, Zadi, Zadi-final. 

So we have here the makings of a sacred alphabet, in which the letters 
are not merely abstract symbolic forms but also have meaning in and of 
themselves. Let's look in detail at the meaning of the first two letters of the 
alphabet at levels 1 ,  2 ,  and 3. 

1 2.6. 1 Oneness 

Level 1 .  Aleph Absolute, stands for All, Aloof, and Alp - a high point, 
a high mountain. It is All-One-Wisdom-Consciousness. Phela (Aleph in 
reverse) is a miracle and a mystery. Aleph as the singular is the sun-seed­
center (the primal point) ,  the Source; Aleph as the Whole, is the idealized 
Fruit - the Apple. Aleph represents the strongest most coherent Archetype. 
That is why Aleph means Ox or Master. 

Level 2. Yod Our personal, individual consciousness is represented by the 
human hand, which projects our personal consciousness into the physical 
world. The Yod is the "seed" and is therefore associated with the male 
organ and with semen and it is a point ( iota in Greek). Yod is an expression 
of our being (the psychologist's Id). That is why Yod means Consciousness, 
hand or point/pointer. 

Level 3. Qof This is our outer "mechanical" or Monkey consciousness. 
It is the shell or physical copy of our inner Yod consciousness. When we 
"ape", we Copy. That is why Qof means Monkey, Copy or Skull. 

Together Qia (Aleph-Yod-Qof) means Eruption. Qi is the name for the 
life-force in the Eastern traditions and "eruption" is what happens at the 
seed-center of Continuous creation - at the center of the torus. 
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1 2.6.2 Distinction 

Level 1 .  Bet Partitions the Unity and Wholeness of Aleph. Aleph by itself 
is One. There is no opposition or polarity, and no need for action or 
change. Bet as the first possible distinction differentiates what is within 
from what is without. In his Laws of Form, G. Spencer-Brown [Spe-B] 
showed that a single mark of distinction separating inside from outside was 
capable of reproducing all of the laws of logic. From Bet on there is difference, 
complement, and contrast. There is spirit and matter, wave and particle. 
That is why Bet, two and duality is a "Housing" (which separates inside 
from outside).  As a prefix, Bet means In or With. 

Level 2. Kaf As the inner aspect of Bet, represents holding in, as in cupping 
in the palm of the hand. Cupping shapes the palm like that which it holds. 
That is why Kaf means palm and why, as a prefix, it designates Likeness and 
Similarity. 

Level 3. Resh As the outer part of Bet, Resh represents the outer reaching 
of Bet. If Kaf is what is in the palm of the hand, then Resh is what radiates 
from the head. That is why Resh means Head, Reaching Rushing and 
Radiation. Together Buker (Bet-Kaf-Resh) means "first born son". These 
letters break open Unity and signify the birth of distinction at each of 
their levels. 

In a similar manner T enen has shown that all of the letters of the 
Hebrew alphabet participate in this three level process that integrates the 
inner world of our consciousness with the outer physical world. Mastery of 
the inner world leads to wisdom, while mastery of the outer world leads to 
understanding. 

1 2.7 Generation of the Flame-Hand Letters 

Ten en proposes that the rabbinic form of the Meruba Hebrew letters can 
be generated from a knot drawn on a dimpled-sphere-shaped torus. In order 
to better understand this construction, let us first consider the concept of 
a knot. 
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(a) (b) 

Figure 12.13 (a) Example of a trivial knot or "unknot"; (b) the unknot drawn with a single 
crossover. 

(a) 

The trefoil is a (3, 2)-torus knot. 

(b) 

Figure 12.14 (a) The trefoil knot, the simplest nontrivial knot, drawn as an under-over­
under pattern; (b) the trefoil knot on the surface of a torus. 

The simplest form of a knot is gotten by connecting the ends of a string 
together to form a loop or unknot (see Figure 1 2 . 1 3a) [AdamC]. In 
Figure 1 2. 13b the unknot, or trivial knot as it is called, is redrawn with a 
single crossing. Since the crossing can be removed without cutting the 
string, it is considered to be structurally identical or isomorphic to the 
unknot. The edge of the umbilic torus is an unknot. 

The first nontrivial knot is the trefoil knot shown in Figure 1 2. 14a with 
three crossings, none of which can be removed. The trefoil knot, as with 
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all nontrivial knots, is basically three-dimensional. However, to represent 
it schematically , mathematicians generally draw its projection in 
two-dimensional space as an under-over-under pattern in which a broken 
line indicates that the string passes under the over-stretched arc (see 
Figure 1 2. 14b). The trefoil map is redrawn around the surface of a torus in 
Figure 1 2. 14c. Notice that in a torus knot there are no crossovers. The 
trefoil torus knot is called (3, 2) ,  since every longitude of the torus intersects 
the knot three times while every meridian intersects it twice. A (5, 3 )  knot 
is shown in Figure 12 . 1 5 .  To draw this knot, place 5 evenly-spaced vertices 
around the inner circle of the torus and 5 vertices on the outer circle, 
directly opposite them. Connect any vertex on the inner circle with the 
vertex on the outer circle displaced by 3 from it in a counterclockwise 
direction. 

Marking points on the equators. 

Attach points by strands across the bottom of the torus. 

Constructing a (5, 3)-torus knot. 

Figure 12.15 Steps to drawing a (5 ,  3) knot on the torus. 
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A torus knot can also be generated from a tetrahelix column by bending 
a column formed of multiples of 1 1  tetrahedra around to a torus, as we did 
for the umbilic torus. The spirals on the surface of the tetrahelix form 
continuous curves on the surface of the torus in the form of (n, 3 )  torus 

4 

5 

Break TORUS Ring and Pun Apart A, B, and C 

2 0 

TRANSITION of the 3, I 0 TORUS KNOT 
from RINO to DIMPLED SPHERE 

ASSEMBLY of a 99 - TETRAHEDRA ;;-FULL TURI\l COLUl'iN 

33-Totrahl!d..a Columns 
One FULL Tum Noh 

:iS-RIBBONS OF 22-LETTER 
TI!IAIIIGULAR FACES 

� 
! FULL TURNS OF W-1'ETRAHEDRA II"�'" COLUMN 

NOTE THE APPARENT 
LOSS OF \11NOINO "0" 

wiW> LOOP "C" FLIPS 
OVER as th• TORUS RING 

DIMPLED SPHERE. 

6,1 0 TORUS KNOT on 
a DIMPLED SPHERE 

Figure 12.16 Transition from a ( 10, 3 )  and a 33-tetrahedra column to a dimpled sphere in 
the form of a braided structure. 
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!�B = li!§Jf 
"Un - Ending" 

!lufi "ROUND DANCE" 

Sofia 
COSMIC EGG 

!JR!'HIC EGG 

th<> EARTH PLANE 

IDERI.. FRUIT 
"!'nil! t•·•• yimlding mrlt 

WilDOI! Gi!l!JJ im lmiide itself" 
Glm. !. 1t 

SMOKE-RING 
'l'lroRLD 

I 
Mod•l ofDNA 
Doubl..-+lolix 

"99- P  .. rls" �I"TfM!Nl$t!rJ 

33··Vort&bn Spinal C<ilumn - t�a 

! SVt'on:!, arrow w - H!JI<Fl! 
- EXCA!.I!lUR 

STEM 
FOUNTAFI 

R>.dif 
RIGHT HANI) 

Figure 12.17 Creation of a hand-like structure emanating from the seed of the "fruit tree". 

knots for n, an integer greater than 2 and not divisible by 3 ,  where n-1 
is the number of multiples of 1 1  tetrahedra that form the tetrahelix when 
n > 3 ( the tetrahelix makes more than one complete turn). Two special 
cases are the tri-loop ( 1 ,  3 )  or umbilic torus formed from 1 1  tetrahedra, and 
the trefoil knot (2 ,  3 )  formed from 22 tetrahedra. 

The transition from a ( 1 0, 3 )  knot to a dimpled sphere in the form of 
a braided structure with three entwined strands is shown in Figure 1 2. 1 6. 
The three strands of this braided structure span six hand-like structures that 
encompass the generic apple shown in Figure 1 2 . 1 7. Three hands around 
the top and three around the bottom of the apple surround the seed at the 
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Figure 12.18 Image of a hypersphere. 

center. From one of the strands, Tenen creates the hand-like structure 
shown emanating from the "seed" of the "fruit tree" with a protruding 
spiral "thumb". It is beyond the scope of this book to describe the spiral 
component of the hand in detail. However, its projection onto the plane 
can be expressed when the spiral is properly truncated, by the simple equation 
r = t in polar coordinates. This is the same spiral curve illustrated in 
Figure 4.6 as part of the "eye of Horus". The reciprocal or hyperbolic spiral 
transitions smoothly from being asymptotic to a line, to being asymptotic 
to a circle. Unlike the common logarithmic spirals, the reciprocal spiral is 
completely asymmetrical - and this is essential to Tenen's proposal. T enen 
also suggests that his "generic apple" or "dimpled sphere" is actually intended 
to represent the three dimensional projection of the surface of a four­
dimensional sphere or hypersphere an image of which is shown in Figure 
1 2.18. (This is also presented by Arthur M. Young in The Reflexive 
Universe.) 

This vortex -like structure forms the "flame-hand" from which T enen 
projects all of the letters of the Hebrew alphabet. To get some idea as to 
the versatility of this asymmetric form, Tenen places it within a tetrahedron, 
the simplest embodiment of symmetry (see Figure 1 2.19). He likens this 
metaphorically to the Old Testament reference to the "light in the meeting 
tent" in which the light is sometimes referred to as a "flame", while the 
tent is referred to as a "coal". A projected image of the flame is taken in 
the direction of the tetrahedron's seven axes of rotational symmetry, giving 
rise to the seven distinctly different images shown in Figure 12.20. 
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The LIGHT In the TENT of MEETING 

The ETERNAL FlAME 

Vortex 
UGHT 

PROCESS - INSIDE 

(a) 

VESSEL 
Tetrahedron - TENT 

The BOW 
In the SKY 

TETRA-FLAME 

STRUCTURE - OUTSIDE 

(b) 

THE LIGHT IN THE MEETING TENT 

(c) 

Figure 12.19 (a) The hand model, or vortex, is referred to as the "flame"; (b) the tetrahedron 

is the "tent"; (c) the combination represents the "light in the meeting tent" from Exodus. 
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Figure 1 2-20 Flame images projected in the direction of the seven axes of a tetrahedron. 

According to some scholars, up until the Babylonian exile, the Old 
Hebrew alphabet - that is the proto-Siniatic/Canaanite alphabet -
consisted of 22 pictograms. During the Babylonian exile, about 500 B.CE. 
a new square-form alphabet came into use. The Assyrian-Babylonian square­
form Meruba letters replaced the Old Hebrew letters in sacred usage. The 
new alphabet now had 27 letters, in which five additional final-form letters 
were added to the original 22. Early examples of the Meruba letters were 
found at Elephantine (circa 300 B.C.E.) .  These letters were also very similar 
to examples of the Rashi-Nachmanides style of rabbinic handwriting in use 
in Islamic Spain, but somewhat different from the formalized "squared-off' 
forms of the Hebrew letters used on modern Torah scrolls to reduce the 
possibility of ambiguous readings. The letters in the first column of Table 
1 2. 1  were created from projections of Tenen's hand form. Notice the 
similarity to the Spanish-era rabbinic forms of the letters, and even the 
somewhat distant relationship to the Elephantine script. 

T enen has gone another step with his proposal. He has found that the 
names of the letters give information as to a series of hand positions in 
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which the eye projects his letter generator to the form of that letter. For 
example when the position of the hand is in the area of the mouth, its 
projection creates the letter "peh" (PAY) which means mouth. He has also 
used his models to discover letter-level coding in the Hebrew text of Genesis 
in the Bible, and he feels that the sequence of letters in the Torah may 
have served, through his hand gestures, as a kind of sacred meditation. He 
feels that it is the hand that projects consciousness from the inner to the 
outer worlds. However these ideas take us beyond the scope of this book 
and my own personal knowledge base. 

1 2.8 Some Commentary on Tenen's Proposal 

As one would do for poetry, T enen's proposal of flame-hand letters should 
be evaluated not only on its literal meanings but on its ability to ring true 
at the level of metaphor. How well does it explain sacred texts and how 
does it speak to our desire to make sense out of our present world? 

Although Ten en has found no explicit evidence for the use of the 
hand-gesture system fot generating the letters, he has found references 
that point to the use of the reciprocal spiral (circle into line) in forming 
the letters, and he has found allusions to this in the so-called "Credo" of 
Judaism, the Sh'ma, from Deuteronomy, and elsewhere in ancient texts and 
practices. It is well known that Orthodox Jews wear two small cubical 
leather boxes with passages from the Hebrew Bible on their arms and 
foreheads during morning prayers. This is described immediately after the 
opening lines of the Sh'ma, and the descriptive text is what is placed in the 
two boxes. 

The arm-tefillin (box with scripture) is held onto the upper arm by a 
leather strap, which is wound on the arm seven times, and then wrapped 
on the hand to form the outline shapes of some Hebrew letters, usually 
Shin, Dalet, and Yud, which spell the Hebrew word "Almighty" (a God­
name). The letter Shin also appears on the tefillin-box worn on the forehead, 
and additional letters are sometimes found in the knot on the strap holding 
the tefillin-box on the forehead. So, in effect, T enen is proposing an 
underlying source for the tefillin-hand-alphabet tradition, which is retained 
in the way tefillin are used by observant Jews today. 
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Sufi "ROUND DANCE" 
Sof i a  

3 
(3 - Souls: e) 

Axis Pole K'ABA 

"The RAD I F "  

Figure 12.2 1 Tenen's hand figure captures the imagery of Rumi's verse. 

There is also much imagery in the poetry of the medieval Islamic poet 
Rumi that could refer to a structure akin to T enen's hand model. Some 
excerpts of Rumi's verse follow, correlated with the geometrical images in 
Figure 1 2.2 1 :  

Come, Come ! Let us whirl about in the rose-garden. -
Let us now whirl about the grain 

which no granary comprehends. -
I am like a goblet 

in the circle of dancers, 
turning from one hand to the other 
with my story. -

Come, come, 0 thou, who are the soul 
of the soul of the soul of the round dance. 

Come thou who are the walking cypress 
in the garden of the round dance. 

Come thou, under whose feet is the fountain of light. 
The roof of the seventh sky -

does not reach where reaches the ladder of the round-dance. 
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12.9 Conclusion 

Tenen's metaphor relating the genesis of the Hebrew letters to the creation 
story relates, at least on the surface, to modem theories of consciousness 
and self-referential systems. In the next chapter knots will be used to 
mathematically characterize self-referential systems. Similar mathematical 
structures to the ones that T enen has chosen to use for his proposal arise 
in other systems related to recent research into the nature of consciousness 
that is the subject of the next chapter. 

Tenen's suggestion that the ancients made use of a torus knot ("basket­
weaving") is also suggestive of modem theories of plant growth or phyllotaxis 
that we shall present in Chapter 24. The human heart is also toroidal, 
wound with microscopic tubular muscles [Pes] . 



Part II 
Concepts Described in Part I Reappear in the 
Context of Fractals, Chaos, Plant Growth and 

Other Dynamical Systems 





1 3  
Self-Referential Systems 

13 .1  Introduction 

Before creation a presence existed, 
Self-contained, complete, 

formless, voiceless, changeless, 
Which yet pervaded itself with 

unending motherhood. 

Lao-Tse 

We humans interact with the world externally through our five senses, 
and internally through our sense of consciousness and identity. Any 
system capable of portraying the inner nature of man must certainly be 
self-referential. Meditation and prayer are two ways of reaching inwards. 
In fact the Hebrew word TE-FEE-LAH ( 16) d-fl ) means both mirror 
and prayer. However, self-referential systems are not readily described 
by mathematics due to the unavoidable logical paradoxes that arise when 
such systems are modeled by the standard theory of two-valued (true and 
false) logic. However, drawing on the work of G. Spencer-Brown, the 
mathematician Louis Kauffman has shown that the theory of logic can be 
extended by adding elements, akin to imaginary numbers, in order to resolve 
these paradoxes. He has also used the theory of knots to describe the logic 
of self-referential systems. 

Self-referential systems will play an important role in Part Two. Fractal 
patterns will be seen to be self-referential as will relationships involving the 
golden mean. I will examine how patterns of number created by our minds 
are encountered in our observations of natural phenomena. Do we, by some 
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self-referential process, project aspects of our minds upon our perceptions 
of the world? 

13.2 Self-Referential Systems in Mathematics 

In Joseph and his Brothers, Thomas Mann portrays time before recorded 
history as a spiral with no beginning. We are never sure at any moment 
whether Mann is referring to the Joseph or the countless Josephs that came 
before him. This is an excellent model for a self-referential system. 

The theory of sets is the bedrock upon which mathematics is built. All 
of mathematical logic, the structure of the number system, and geometry 
rests on the notion of a set. In fact, a set is an undefined object and may 
naively be considered to be "a bunch of things" along with a precisely 
stated rule to determine whether a given entity is or is not in the set. For 
example, the set of positive integers less than or equal to 5 is the finite set, 
{ 1 ,  2, 3, 4, 5} whereas the set of even positive integers is the infinite set, 
{2 , 4, 6, 8, . . .  }. 

At the beginning of the twentieth century, most mathematicians thought 
that every mathematical truth, or theorem, could be proven from a 
sufficiently complete system of axioms .or premises, and that the entire 
structure of mathematics could be expressed in terms of sets. The 
mathematician and philosopher Bertrand Russell and the philosopher Alfred 
North Whitehead set out to do just this in their classic treatise on logic, 
Principia Mathematica. However, the program of Russell and Whitehead 
began to founder when Russell discovered a class of sets that led to what 
seemed at first to be a bunch of silly sounding paradoxes. For example, 
consider a mythical town in which there lives a barber who shaves everyone 
in town who does not shave himself. Russell then considered the set of 
people who were shaved by the barber and asked whether or not the barber 
himself was in that set. If he is in the set then he does not shave himself. 
But this then implies that he is not in the set. In other words if he is in 
the set then he is not in the set. As trivial as this conundrum appears, it 
put an end to Russell's and Whitehead's attempt to axiomatize mathematics 
and led eventually to Godel's proof that such a program was futile. According 
to Kauffman [Kau4] , 
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"At first it is not clear whether the difficulty with the 
Russell set is in the notion of set formation, the idea of 
self-membership, the use of the word "not", the use of the 
word "all", or elsewhere. The Theory ofT ypes due to Whitehead 
and Russell placed the difficulty in the use of self-membership, 
and solved the paradox by prohibiting this and other ways of 
mixing different levels of discourse." 

However, the notion of self-reference has many connections to important 
aspects of mathematical and cybernetic thinking. One of the pioneers in 
the study of self-referential systems was David Finsler. His work has recently 
been presented by David Booth in a book entitled Finsler Set Theory [Boo2]. 
Self-referentiality is connected not only with the concepts of feedback, 
recursion, and self-similarity, but also to those of knots, weaves, fractals, 
notions of infinity, and imaginary numbers. For this reason it is of great 
importance to find a place for the notion of self-referentiality in the Pantheon 
of mathematics, and to find some way to extend Russell's notion of a set 
to nonstandard sets. 

13.3 The Nature of Self-Referentiality 

The concept of self-referentiality is very elusive and difficult to express due 
to the limitations of language. Kauffman has done much to place the notion 
of self-referential systems on a firm mathematical foundation, and he has 
presented the following description of it [Kau2]. 

"What is self-reference? At least one distinction is involved 
in the presence of self-reference. The self appears, and an 
indication of that self that can be seen as separate from the 
self. Any distinction involves the self-reference of 'the one 
who distinguishes' .  Therefore, self-reference and the idea of 
distinction are inseparable (hence conceptually identical)." 

"We explore self-reference by examining what appears to us as 
distinctions. Through experiencing self-reference, we come to 
understand the possibility of distinguishing." 
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"A mark or sign intended as an indicator is self-referential. The 
self is the whole space including the mark and the observer. 
But the mark points, in the first place, to its own location, and 
in this process becomes a locus of reference. The mark refers 
to itself. The whole refers to itself through the mark. Pointing 
is represented by an arrow �· The anatomy of the arrow 
consists of a body, __ , and a barb (or mark, or pointer) >. 
Together they accomplish directionality and indicate the 
possibility of movement from locale to locale: 

Here To Here 

When we turn the arrow on itself, we achieve self-reference 
with the whole as the arrow itself, and the barb and the tail as 
'parts"' (see Figure 1 2. 12) .  

0 
"The self-pointing arrow becomes self-referential only through 
the agreement of an observer. Thus, it achieves self-reference 
through primary (primordial) self-reference. At the same time, 
the self-pointing arrow is a symbol for the condition of 
observation in which the self appears to divide itself into that 
which sees and that which is seen. Thus do barb and tail 
appear separate although they are joined." 

"The self-pointing arrow creates a directed circle which invites 
us to travel around it from observed to observer to observed to 
observer . . .  This circulation binds parts back into the whole, 
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and it has the geometry of what we might call the unidirectional 
circular unfolding as shown below. 

0 
In this unfolding, the individual arrow bent around to form a 
circle, has become an ordered infinity of arrows, each 
representing a particular trip around the cycle. In total, these 
arrows set tip to tail and create a directed line pointing off to 
infinity." 

"Self-reference is the infinite in finite guise !" 

This unfolding holds the simple aspects of any infinite form. These are 
invariance and self-similarity. lnvariance manifests itself through the 
circumstance that after many turns of the wheel it is possible to lose count 
- lose the sense of difference between corresponding places on different 
cycles, just as with the countless Josephs at the beginning of this section. 
How long has it been? When did this process begin? 

In a simple example, consider an infinite string of arrows. The invariance 
can be indicated symbolically as below: 

a = >>>>>>>>>>>>> . . .  

Hence, 
a = > a when a = >>>>>>>>>>> . . .  

The infinite arrow a is a form that remains the same when adding a single 
arrow to the left. Note that the equation, a = > a is also an expression of 
self-reference, in that it describes "a" in terms of itself. And within the 
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present context, this is sufficient for the reproduction of "a" as an unending 
process. Quoting [Kau2]: 

"Self-similarity is embodied in the expressed fact that 'a' 
has a copy of itself within itself [as we shall see again in 
Chapter 1 8] .  This is another reading of the equation, a = >  a. 
How is this formal self-similarity related to our intuition of 
self-within-self through introspection? I suggest that, in form, 
these circumstances are identical. It is in moving through the 
cycle and seeing the invariance that we come to a reflection 
of the self. But note that this personal process involves the 
non-mechanical aspect of integration of the parts into a whole. 
It is non-mechanical because there is no way to formalize the 
entire circumstance of human self-reference in a system of 
symbols devoid of an observer. But who or what is the observer?" 

13.4 Self-referentiality and the Egyptian Creation Myth 

The concept of self-referentiality as described by Kauffman is a kind of 
creation story. Form is brought into being from within itself. Let's compare 
this to Egyptian creation myths as enunciated by Lucie Lamy [Laml] ,  a 
scholar of ancient Egyptian mythology: 

"At Heliopolis the mystery of the Creation is described in its 
archetypal aspect. Here the name Atum is given to the One, 
the unique power which will become the Creator. Atum means 
All and Nothing, the potential totality of the Universe which 
is as yet unformed - for first A tum must 'project himself' or 
distinguish himself from the Nun, and thereby annihilate the 
Nun in its original inert state." 

In one version, Atum gives birth to himself through masturbation causing 
"the seed from the kidneys to come". He then brings the twins Shu and 
T efnut into the world. A tum is thus seen as the carrier of the invisible fire 
or seed, the cause of the first definition to arise from the undefined Nun. 
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He then brings forth from himself the group of nine divine principles (eight 
of them plus himself) which order the Becoming - the Great Ennead. 

The archetypes enunciated by Atum at Helipolis are materialized by 
Ptah. The Shabaka Text ( 7 10  B.C. ) enumerates Ptah's eight qualities. Thus 
Ptah incarnates the primordial Eight. It is said that the Ennead, which was 
the "seed and hand of A tum", becomes the "teeth and lips of Ptah" and 
gives a name to each thing, bringing it into existence. Divine principles 
and qualities (the Ennead) can now "enter into all the species of things" 
- mineral, plant, or animal - and become manifest through them. This is 
clearly an account of Creation by the Word. As Section 1 2.6 showed, the 
Hebrew alphabet also had the effect of bringing things into being through 
the letters of the alphabet. 

The primordial Eight are called the "fathers and mothers of Re" where 
Re or Ra represents the principle of light. Re is often said to be the Sun. 
However, according to Lamy, Re is not the light but that which provokes 
the phenomenon of light. Re is called Atum-Re at Heliopolis and 
Amun-Re at Thebes. The Egyptians considered numbers to have a generative 
function as evidenced by the association of number to the names of the 
Theban sanctuaries. There exists a hymn consecrated to Amun-Re, 
constructed on a series of plays on words and on numbers. This hymn 
(Leyden Papyrus 1 ,350) is composed of 27 stanzas and numbered with the 
first nine numbers. It is another reference to Tenen's enneagon. 

13.5 Spencer-Brown's Concept of Re-entry 

Another way to view self-referentiality is through the concept of re-entry. 
The philosopher, Spencer-Brown [Spe-B] , was able to redevelop the system 
of mathematical logic by considering the idea of a form that reenters its own 
indicational space. A space is severed or taken apart; form appears in the 
process, and the form appears to enter or re-enter the very space that 
generated it, a kind of creation story. According to Spencer-Brown: 

"A universe comes into being when a space is severed or taken 
apart. The skin of a living organism cuts off an outside from 
an inside. So does the circumference of a circle in a plane. By 
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tracing the way we represent such a severance, we can begin 
to reconstruct, with an accuracy and coverage that appear almost 
uncanny, the basic forms underlying linguistic, mathematical, 
physical, and biological science, and can begin to see how the 
familiar laws of our own experience follow inexorably from the 
original act of severance." 

The concept of re-entry can be illustrated by a rectangle with an arrow 
indicating the placement of a copy of itself at the point of the arrow. This 
results, in the limit, in an infinite sequence of rectangles, as shown in 
Figure 13. 1 .  

Another example is the Fibonacci form shown in Figure 13 .2a [Kau4] 
which represents the infinite sequence of boxes shown in Figure 13.2b. The 
number of divisions of this form at depth n is the nth Fibonacci number, 
i.e., one of the numbers of the F-series: 1 ,  2, 3, 5, 8, .. . . A division is said 
to have depth n if it requires n inward crossings of rectangle boundaries to 
reach that region from the outermost region in the plane. Each rectangle 
divides the plane into a bounded region and an unbounded region. A 
crossing of the boundary of a given rectangle is said to be an inward crossing 
if it goes from the unbounded region to the bounded region. In Chapter 1 8  
we shall see that the notion of re-entry results in fractal curves. 

j = ED 

(a) (b) 

Figure 1 3 . 1  The concept of reentry: (a) a copy of a square is inserted within itself; (b) this 
results in an infinite sequence of squares receding to a vanishing point. 
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F = � = 

(a) 

· 2 � 
1 

����� 
4 

\�I I� 
(b) 

Figure l3.Z (a) The Fibonacci form F seen as a reentry form, the entire diagram replaces F; (b) 
this results in a sequence of rectangles in which the number of rectangles at depth n follows the 
Fibonacci sequence: 1 ,  2, 3 ,  5, 8, . . .  

Such an unending form is evident when one attempts to find the truth 
value of a statement such as: "This statement is false". If the statement is 
true, then it is false; if it is false, then it is true. The re-entering mark is 
asked to satisfy the equation 

fl = f. 
In the form of the liar's paradox, the equation fl = f becomes f = - f, 

where - stands for negation. In other words any attempt to evaluate the 
truth or falsehood of f leads to an iterative pattern: 

I = TITITFTITFTF . . .  

or ( 13 .1 ) 

J = FTFTFTFTFTFT . . .  
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depending on the initial truth value. The symbols I and J were first introduced 
in [Kau-V] and later expanded in [Kau3]. A discussion of the standard 
theory of mathematical logic wi l l  be presented in Chapter 1 6 . 
Spencer-Brown uses his notion of the "form" as an alternative to the standard 
approach and an introduction to form logic is presented in Appendix 1 6.A. 
Self-referential statements such as those in Expression 13 . 1  are examples of 
the so-called "liar's paradox". They are beyond the capabilities of the 
standard logic. 

13.6 Imaginary Numbers and Self-referential Logic 

Complex numbers z have the form of a + bi where i == � where a and b 
are real numbers. The number "a" is called the real part of z and "b" is the 
imaginary part. Although imaginary numbers have always been mysterious 
and a bit suspect to non-mathematicians, they are part of the tool-chest of 
mathematicians, physicists, and engineers and have many important 
applications. 

Once complex numbers are described geometrically, they are easier to 
comprehend. Each point x, y in the plane can be identified with a complex 
number z == x + iy as shown in Figure 13.3.  The complex conjugate of z is 
defined as z* == x - iy. If z is multiplied by i, 

iz == i (x + iy) == -y + ix where i x i = -1 .  

Therefore we see that the effect of multiplying z by i is to rotate z by 90 
degrees in a counterclockwise direction. 

Functions such as sin, cos, log, exp are generally defined for real numbers. 
However, to truly understand the inner workings of these functions, one 
must extend the domains over which they are defined to all of the complex 
numbers. We find that when we enter the complex domain from the 
real numbers, an unseen world opens. We saw this for growth measures 
induced on lines whose intersection points with a conic are imaginary 
(see Section 2.6). Although the fixed points of these transformations are 
not visible in real terms, they nevertheless exist in the unseen realm of 
complex numbers. 
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DIAGRAMS 

Im 

iz=-y+ix 

z=x+iy 

* . 
z =x-ly 

Re 

Figure 13.3 A complex number z = x + iy, its complex conjugate z* = x - iy, and a 90 degrees 
counterclockwise rotation iz. 

Besides being able to enter the imaginary realm from the domain of real 
numbers, one can also enter the real numbers from the imaginary by 
multiplying z by its complex conjugate z* to get, 

z z* = (x + iy ) (x - iy ) = i + /. 
Complex numbers are used to solve differential equations that describe all 
areas of physics and applied mathematics. For example, in quantum 
mechanics the location of a particle is determined from a complex valued 
function \{1 known as the wave function of the particle. The probability that 
a particle is located at a certain position is determined by multiplying tp by 
its complex conjugate tp* to obtain tptp*, known as the wave probability 
density function. This real-valued function numerically describes observations 
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of the state of the particle, while the complex form provides the formalism 
to describe the wave properties of the particle and its evolution over time 
by way of differential equations. 

Kauffman (cf. [Kau-V] , [Kau2,3] ) ,  following the lead of Spencer-Brown, 
has shown that by widening the scope of logic to include imaginary numbers 
offers another way to enter the realm of self-referential systems. I showed 
above that the solution to > a =  a, [[]= f, and 71 = f for the liar's paradox 
were indicative of self-referentiality. But T( i ) = i where T(x) = �1 (since 
�1 = �1 X i =  i where i X i = - 1 ) which shows i to be governed by a I I I 
self-referential process. In Section 2 .8  the imaginary number i was 
expressed in terms of an infinite process as were I and ]. Kauffman 
has shown that the relationship between imaginary numbers and 
self-referentiality is a strong one. In fact I and ] (different from the previous 
I and J) of Expression 13 . 1  correspond formally to a complex number (a 
number of the form a +  ib) and its complex conjugate (a - ib) [Kau3] .  We 
encountered them in Section 2.6 as the intersection points of a finite circle 
with the line at infinity. The connection between complex numbers and 
logic is described more fully in Appendix 13 .A. Quoting Kauffman: 

"Both I and ] may be regarded as particular ways of viewing 
an unending oscillation of T and F. In this sense, they are like 
two views of a Necker cube illusion (where a point on the cube 
appears to oscillate from foreground to background) ,  and 
they represent the way the process of perception splits an 
apparently existent form into a multiplicity of mutually exclusive 
and yet related views. The complex numbers, a + bi and the 
imaginary values I and ] are the simplest mathematical forms 
that take into account a context combining evaluation and 
multiplicity. The imaginary Boolean values become an image 
of self-reference, a first description of the multiplicity in oneness 
that is a return to the self." 

Kauffman believes that it is this resonance that accounts for the 
unreasonable effectiveness of the complex numbers in mathematics and 
physics and he concludes, "Only the imaginary is real". 
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13.7 Knots and Self-referential Logic 

Kauffman has shown that knots lead to a natural means of characterizing 
the notion of self-referentiality in finite guise [Kau4]. Objects are indicated 
by non-selfintersecting arcs in the plane. A given object may correspond to 
a multiplicity of arcs. This is indicated by labeling the arcs with labels 
corresponding to the object. Thus the mark in Figure 13 .4a corresponds to 
the label "a". 

Membership is indicated by the diagram shown in Figure 13 .4b. Here 
we have shown that a E b. The arc b is unbroken, while "a" labels two arcs 
that meet on opposite sides of b. Following the pictorial convention of 
illustrating one arc passing behind another by putting a break in the arc 
that passes behind, one says that "a" passes under "b". 

With these diagrams it is possible to indicate sets that are members of 
themselves as shown in Figure 1 3 .5a and sets that are members of each 
other, as shown in Figure 13 .5b. 

0 oE b 

(a) (b) 

Figure 13.4 (a) An object is indicated by an arc; (b) two arcs indicating membership. 

a 

a = fal 
(a) (b) 

b 

a = £bl 
b = fal 

Figure 1 3.5 Representation of sets that are members of themselves. 
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b a b a 

0 0  
b .. fa,al b • E l 

Figure 13.6 Sets may contain a multiplicity of identical members. For example b = {a, a} is 
equivalent to b = { } (the empty set). 

I . ---a 

I I .  

Figure 13.7 Knots are considered indistinguishable under the three Reidemeister moves. 

As they stand, these diagrams indicate sets that may have a multiplicity 
of identical members. Thus for Figure 13 .6, b = {a, a} and a =  { } (the empty 
set since it contains no element) .  However, identical terms cancel in pairs 
since the two loops can be topologically pulled apart. This corresponds to 
the second of three ways of redrawing a knot to an equivalent knot without 
cutting the strings called Reidemeister moves illustrated in Figure 13 .7 .  

Although knots are generally indistinguishable (or isotropic, as 
mathematicians say) under Reidemeister moves, Kauffman has pointed out 
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Figure 13.8 The first Reidemeister move can be distinguished if the strings are considered to 
be bands with a twist. 

Figure 1 3 .9 A knot representing a self­
referential set. 

that the first move can be used to distinguish knots if the strings are 
considered to be bands rather than infinitely narrow strings. This time 
when the first Reidemeister move is carried out, the band in Figure 13 .8 
shows a twist which indicates the self-referential nature of the set represented 
by it. In this way the knot set gives a way to conceptualize nonstandard sets 
without recourse to infinite regress. Infinity has been transposed into topology 
where inside and outside can equivocate through the twist in the boundary. 
In knot sets we obtain the multiple levels of ordinary set theory without the 
seemingly necessary hierarchy. 

Quoting Kauffman again: 

"This is nowhere more evident than in the self-membering set 
represented by a curl (shown in Figure 1 3 .9). Here an observer 
on the curl itself will go continuously from being container to 
being member as he walks along the ramp. The unknot can 
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represent a nonstandard set which is both 'not a member of 
itself' and 'a member of itself' at same time, thus resolving 
Russell's paradox." 

13.8 Conclusion 

Based on the work G. Spencer-Brown and L. Kauffman, imaginary numbers 
can be used to study self-referential systems. Mathematical concepts from 
the theory of knots can also represent self-referential systems. 

Appendix 13.A 

This part is excerpted from [Kau2].  In the language of [Spe-B], I and 1 
(cf. [Kau l ] ,  [Kau5] )  correspond respectively to initial assumptions of 
markedness or unmarkedness for f in the equation fl = f. If we think of the 
solution to 71 = f as the re-entering mark C) then we see that 

1 =  
1 =  
11 = 

IJ = I 

Any attempt to evaluate the re-entry will set it in an oscillation whose 
phase is determined by the initial conditions. 

The two solutions I and 1 correspond formally to a complex number and 
its conjugate. And they can be combined to create a real value. For example, 
if I and 1 are regarded as oscillations between markedness and void, then 
1] (the simultaneous combination of the oscillations) is always marked and 
hence represents a marked state. 
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DIAGRAMS 

l=[F,Tl $[A,BJ•[ -B,Al 
$ $ 

F=[F,F] -----+------T .. [T,TJ 

$ 
:.J=[T,F] 

Figure 13.Al A diagram illustrating an extension of logic to include self-referential states I 
and ] in addition to T and F. 

If we represent I and ] by ordered pairs 

I = [F, T] , ] = [T, F) .  

then we can create a cartesian cross of real and imaginary logical values as 
shown in Figure 13 .Al .  

Here T = [T, T] and F = [F, F] represent true and false as indicators of 
a constantly true and constantly false process. The artifice of the ordered 
pair allows indication of the phase shift between I and ] . 

In Figure 13.Al ,  we have also indicated an operation $ defined by 

Thus, 

$ [A, B) = [-B, A] . 

$T = [-T, T] = [F, T] = I ,  
$I = F ,  
$F = [T, F) = ] , 
$] = T,  
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and so we see that this cross of real and imaginary (I, ]) Boolean values 
carries the same properties as the real and imaginary numbers + 1 ,  -1 , +i, 
-i. In this formal version we even have an operator $ corresponding to the 
90 degree rotation! 

In fact it is very tempting to rewrite it in the form 

$$ = - ,  

$(A + $B) = $A +  $$B = $A - B = -B + $A , 

and to compare this with 

$(A, B) = [-B, A] and with 

i(a + ib) = ia + iib = ia - b = -b + ia . 

Kauffman makes one further comment about the cross of real and 
imaginary values in logic (Figure 13A.2). 

A useful interpretation ensues if we consider the vertical axis of 
Figure 13A.2 to be an axis of possibility, while the horizontal axis represents 
necessity. Thus "true" and "false" are states in the domain of necessity, 
while "possibly true" and "possibly false" are states in the domain of 
"possibility". According to Kauffman, if a proposition is viewed as possibly 
false, then one "looks for a counterexample". If a proposition is viewed 
as possibly true, then one looks for a proof. These are very different attitudes. 
The attitude of possibility is very free. The attitude of necessity is 
closed/complete. Possibility opens to verification or falsification. 



14 
Nature's Number System 

14. 1 Introduction 

All mathematical forms have a primary subsistence 
in the soul so that prior to the sensible 

she contains self-motive numbers. 

Thomas Taylor 

Number has always been an object of fascination to both laypersons and 
mathematicians. In this chapter I will take a fresh approach to number. When 
organized according to a sequence known as Farey sequence, numbers are 
immediately expressive of relationships found in chemistry, physics, biology, 
and astronomy. It is for this reason that I refer to the Farey sequence as 
"nature's number system". In preparation for a discussion of nature's number 
system some general concepts are necessary. 

14.2 The Nature of Rational and Irrational Numbers 

According to Philolaus, "All is number". Yet Greek mathematicians did 
not use numbers to represent magnitudes. Rather number represented the 
relationships between magnitudes. Two lengths were said to be commensurate 
if each could be constructed from a finite number of units, known as monads, 
such that a finite multiple p of one equaled a finite multiple q of the other 
as illustrated in Figure 14. 1  for the lengths of two and three units respectively. 
This relationship corresponds to what we now refer to as the rational numbers 
1 or -f .  In this way a rational number is defined to be a relationship between 

309 
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I I I 

I I I I 

I I I I 

I I I I 

I I I I 

I 

I I 

I I 

I I 
I I I 
I I I 
I I I 
I I 

Figure 14.1  The proportional relation 3:2 or 2:3. Three pairs of units equals two triples 
of units. 

commensurate lengths represented by � where p and q can always be assumed 
to have no common factors ( i.e. ,  the fraction is expressed in lowest terms) 
or as we say they are relatively prime. 

We saw in Chapter 3 that the incommensurability of the solar and lunar 
cycles, on the one hand, and the musical scale on the other hand, presented 
great challenges to ancient cultures as they sought to express their 
observations in terms of number. The limitation of number to rational 
numbers finally broke down in the time of Pythagoras, when it was discovered 
that the side and diagonal of a square were incommensurate. These lengths 
have the property that no multiple of one equals a multiple of the other. This 
presented Greek mathematics with a dilemma since there was no body of 
knowledge with which to represent such numbers. No adequate theory was 
available until the nineteenth century when Richard Dedekind ( 183 1- 1916) 
found a way to characterize irrational numbers. 

What was astounding about Pythagoras' discovery was the way he 
accomplished it. It certainly could not have been done by the means that we 
used to illustrate the rationality of f . After all, the monad might be small 
beyond the ability to physically construct it. The argument had to be carried 
out deductively - in other words, by using pure reason. Until Greek 
mathematics, the concept of a deductive proof did not exist. Pythagoras' well 
known proof that the square root of two is irrational can be found in any 
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book on mathematical foundations [Kra]. In modern terms, rational numbers 
are characterized by decimal expansions that are either finite or repeat after 
some point such as 0.35 = ?� or 0.43252525 . . .  = ���b . On the other hand 
irrational numbers are represented by non-repeating decimals such as 
0.101 101 1 101 1 1 1 .  . . .  

The profound differences between rational and irrational numbers also 
extend to their denumerability. Between any two rational or irrational 
numbers there is another rational or irrational. Thus the set of rationals and 
irrationals are both infinite. However, we shall see that while the set of 
rationals is denumerable, when the irrational numbers are added, it becomes 
non-denumerable. A set is defined to be denumerable if each number can be 
matched one-to-one with the natural or counting numbers 1 ,  2, 3, 4 . . . . 
Loosely speaking, we say that a denumerable set has the "same" number of 
elements as the set of natural numbers. In this way the set of positive even 
integers is said to be denumerable since each even integer is 2 times some 
natural number. This presents us with the awkward realization that there are 
just as many even numbers as positive integers and makes it clear that when 
dealing with the nature of infinity, mathematics provides the only guide. 

Although the set of rationals and irrationals are both infinite, the order 
of the infinity for irrationals is greater and so we are justified in saying that 
there are more irrationals than rationals. In fact, the rationals are sparsely 
distributed on the number line as compared to the irrationals, in a way that 
mathematics makes precise [Rue] . I will show that the set of rationals are 
also denumerable and leave it to Rucker for a proof that the irrationals are 
non-denumerable. In the process, I will illustrate the way in which all 
numbers arise from the pair, 0 and 1 .  

14.3 Number 

I will proceed to generate all numbers of the number l ine from the 
pair f and t . This can be thought of as a kind of creation story in which 
a rich set of relationships arise from the duality initiated by 0 and 1 .  My 
examination of these ideas were stimulated by a conversation with the 
mathematician Irving Adler [Adll] .  



3 1 2  Beyond Measure 

14.3 . 1  All positive numbers of the number line are generated from 
the numbers � and t . Of course � = 0, but what does t signify? It is 
undefined but it can be taken to represent infinity by considering the 
sequence, 1Jz = 2, 1}J = 3, 1}4 = 4, . . .  , tfn = n and letting n get large while 
; approaches 0. 

14.3.2 Set up a number line as follows: 

0 
1 

1 
0 

14.3.3 Define an unusual kind of addition between two fractions, $, in the 
manner so tempting but forbidden to children in the early grades, in which 
numerator is added to numerator and denominator to denominator. In this 
way the numbers 0 and 1 enter as "marks of distinction" in the sense of 
Spencer-Brown (see Section 13 .5) ,  upon the void, i.e., � fB -{y = f:� = +· Such 
an "addition" always produces a number intermediate between the two 
summands, referred to as the mediant. 

14.3.4 Place f on the number line. This defines two intervals, [f , f] which 
I call the left (L) interval and [t ,  t] , the right (R). Any numbers occurring in 
these intervals will be referred to as left (1) or right (r) numbers respectively. 

0 
1 L R 

1 
0 

( 14. 1 )  

14.3.5 Two such numbers are now defined by adding the numbers bounding 
the L and R intervals, i.e., �EBt  = 1 and tEBt  = f . With the mark of 
distinction f as the vantage point, let t = l since it is in the left interval 
and is gotten by addition of the endpoints of the interval; by the same 

. 2 -reasonmg, T - r . 

14.3.6 Placement of 1 and f on the number line now divides the original 
two intervals into four intervals. Let [ � ,  1] = LL since it is the left refinement 
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of interval L and [t ,  tJ = LR since it is the right refinement of interval L. 
By the same reasoning, [t ,  t] = RL and [t ,  "5] = RR . 

0 1 1 2 .l 
1 li 1 il 1 � 1 � 0 

( 14.2)  

Any number occurring in one of these four intervals will be referred to as 
either a ll, lr, rl, or an rr number, their representations begin with ll, lr, etc. 
So we have two notations, the L, R-interval notation and the l, r-number 
notation. 

14.3. 7 Four such numbers are gotten by adding the endpoints of these 
intervals: 1 , 1 , 1 , f .  Therefore + = ll , 1 = lr , -! = d ,  and f = rr. Notice 
that all additional numbers to the right of f are reciprocals of the ones 
to the left. Therefore, in what follows we shall only consider the numbers 
less than or equal to f . The numbers, 1 and j divide the interval [ f ,  tJ into 
the four subintervals 

0 1 1 2 1 
1 LLL 3 LLR 2 LRL 3 LRR 1 

( 14.3 ) 

14.3.8 In the next iteration, to the left of f we get the additional rationals: 
lll = t , llr = � , lrl = 1 , lrr = � , and this gives rise to eight intervals to the 
left of f . 

Q .l .l l .l 1 l 1 1 
1 LLLL 4 LLLR 3 LLRL 5 LLRR 2 LRLL 5 LRLR 3 LRRL 4 LRRR 1 

( 1 4.4) 

14.3.9 The next iteration yields eight new rationals to the left of f .  In fact, 
each new group of rationals appears in the order found in successive row� 
of a mathematical structure known as the infinite Farey tree (see Table 1 4. 1 ) . 
Each number in the table is the sum E!1 of the two numbers that brace it 
to the left and right from above, and each number is connected to the two 
immediately below it by a left branch l and a right branch r. 
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0 T 
Row O 

Row 1 

Row 2 

Row 3 

Table 14. 1  The infinite Farey tree. 

1 
2 1---------- ------------- 1 

3 3 ""-.l/ �1 1 /  ""- .1  
4 5 5 / 4\ 1 / "' 2 3/ "'3 4/ "'5 5 4 5 7 8 7 7 8 7 5 

I T 

Taken together, the numbers in Rows 0-4 divide the interval [f , f] into 
32  subintervals. Notice there is a unique path from t to any number in 
the tree. For example, to go from f to � proceed in the directions 
f � f � f � i or llr which was the value assigned to � in last section. 
This sequence represents the order in which i was generated from 
f and f by adding endpoints. 

14.3 . 1  0 Notice that the nth row of the Farey tree (see Table 14. 1 ) contains 
zn rationals (starting with 1 as row 0).  Any parent fraction � in one row 
gives birth to two successor fractions N � 0 and N � 0 in the next row whose 
ratio is � and whose sum is 1 (see Section 9.4). A procedure for carrying out 
this transformation graphically is given in Appendix B.A. Therefore, the 
successors can be considered to be the probability of winning and losing some 
event such as a game of dice or a horse race, and the parent is the odds of 
winning or losing that event. Also, if a successor � is less than -! ,  its parent 
is D�N ; if the successor is greater than 1 ,  its parent is 0}_t . For example, 
the successors of i are 2:5 = f and f = 2 � 5 , whereas the parents of 
2 d 5 2 - 2 - 7-5 7 an 7 are R - -s - -5- .  

14.3 . 1 1 I claim that in this way we generate all of the rational numbers. 
But how do we know this for sure? By rearranging these numbers in the 
manner illustrated in Table 14.2 we are assured that all rationals are listed. 
In this sequence all rational numbers in lowest terms with denominators n 

or less are listed in row n, Fn. Table 14.2 is intimately involved in the 



Table 14.2 Infinite Farey sequence. 

} I  Q l 1 1 

}2 Q 1 1 1 2 I 

}3 Q I 1 2 l 1 3 2 3 I 

}4 Q 1 1 1 2 .J. 1 1 4 3 2 3 4 I 

Js Q 1 1 1 2 1 1 2 1 4 1 1 5 4 3 5 2 5 3 4 5 I 

}6 Q 1 1 1 1 2 1 1 2 1 4 � 1 I 6 5 4 3 5 2 5 3 4 5 6 1 
() 

}1 Q 1 1 I 1 2 1 2 .J. 1 4 1 2 5 1 4 � 2 1 ! I 7 6 5 4 7 3 5 7 2 7 5 3 7 4 5 6 7 I R .... -
}8 Q 1 1 1 1 1 2 1 .J. 2 1 1 4 l .s. 2 5 l 4 .s. 2 1 1 � 

1 8 7 6 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 6 7 8 1 � 
Q 1 � 

}9 1 1 1 1 1 2 I 2 1 1 2 1 4 1 � 4 l .s. 2 5 .J. 1 4 � 2 1 .a Vo-

I 9 8 7 6 5 9  4 7 3 8 5 7 9 2 9 7 5 8 3 7 4 9 5 6 7 8 9 I z 
� 

}10 Q 1 1 1 1 1 1 2 1 2 1 1  1 2 .J. 4 1 .s. 4 .J. � 2 1 2 3 7 4 � 2 1 .a .2 1 � .... 
I 10  9 8 7 6 5 9 4 7 1 0  3 8 5 7 9 2 9 7 5 8 3 10 7 4 9 5 6 7 8 9 10  1 (/) « 

� 
} I I  Q 1 1 1 1 1 1  2 1 2 1 .J. 2 .J. 1 4 .J. 2 .J. 4 � 1 2 .s. � .J. .s. 1 2 1  .s. .8 .J. 1 4 .2 � 2 1 .a .2 1Q l  s 

I 1 1 10  9 8 7 6 1 1  5 9 4 1 1  7 1 0  3 1 1  8 5 7 9 1 1  2 1 1  9 7 5 8 1 1  3 1 0  7 1 1  4 9 5 1 1  6 7 8 9 1 0 1 1  I \.;> ...... 
V1 
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structure of prime numbers through Euler's function. This is described in 
Appendix 1 4.A. 

14.3 . 1 2  The modulus of two rationals, Pqt and Pz , is defined to be 1 qz IPiqz - Pzqd where I I  is the absolute value. Notice that any pair of adjacent 
rationals in Table 14.2 have modulus 1 .  For example the modulus of z d 3 . F . 5 an 7 m  7 lS 

The significance of the moduli of adjacent terms in Table 14 . 1  will be 
discussed in Section 1 5 .5.  

14.3 .13  In Table 14.3 the pattern of the Farey tree is reproduced so that 
the vertices are labeled with 0 if they are a right branch or 1 if they are a 
left branch of the tree and the numbers are counted in the manner shown. In 
this way every number in the Farey sequence is assigned a counting number. 

Table 1 4. 1  can be assigned a binary number (see Section 1 5 .2 for a 
definition of binary numbers) .  For example, f = 1 10 , which reproduces its llr 
pattern if l = 1 and r = 0. Converting 1 10 from binary to decimal notation, 
1 X 4 + 1 X 2 + 0 X 1 = 6, and we see that f is numbered 6 in the tree. As 
another example, i = llrl = 1 10 1 , which in binary is 1 x 8 + 1 x 4 + 0 x 
2 + 1 X 1 = 13 .  Thus i can be found as the 13th number in the Farey tree. 

Table 1 4.3 Binary structure of the infinite Farey tree. 

file:///piq2
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14.3. 14 We see that each rational number is associated with a unique 
positive integer in terms of its binary representation, and each binary 
representation corresponds to some rational number. In other words, there 
is a one to one correspondence between the counting numbers and rationals, 
which means that the rationals are denumerable. 

1 4.3 . 15  Notice in Table 14.2  that the fractions between ! and t in Fs 
constitute ten out of the 1 2  tones of the octave either from the Just scale 
(see Section 3 .5 )  or the overtone scale (Section 4.2) :  t = octave, 1 = 
natural minor seventh, i = sixth, i = minor sixth, f = fifth, t = tritone, t = fourth, t = third, i = minor third, � = natural minor third, f = 
natural wholetone. Farey series have been used by musical theorists to study 
systems of musical intonation [Ras]. 

14.3 . 16  Beginning with t ,  the sequence 

. . .  lll, ll, l, r, rr, rrr, . . .  

corresponds to the sequence, 

1 1 1 1 2 3 4 
. . .  4, 3' 2 '  1' 1 '  1 '  1 ,  . . .  

recognized to be the overtone and undertone series of music (see Section 4.2). 
The left half of this series appears at the left boundary of Table 1 4. 1 .  

14.4 Farey Series and Continued Fractions 

14.4. 1 Consider the number f = llr. We see from Sequences ( 14. 1 )  to 
( 14.4) that f is located in intervals L, LL, LLR, and forms the left endpoint 
of LLRR and the right endpoint of LLRL. Let us associate f with the latter 
two intervals in which it appears as left and right endpoints for the first 
time. Justification will follow in ( 14.4. 1 2) .  

Let LLRL = [2, 1 ,  1 ]  and LLRR = [2, 2] .  We have counted, here, the 
number of contiguous L's and R's in the L, R-representation. The numbers 
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in brackets are the indices of a compound fraction known as a continued 
fraction where, 

LLRL = [2 , 1 ,  1] = 1 and LLRR = [2, 2] = 1 
2 + 1 

1 + 1 
1 

2 + 1 
2 

These expressions can be written in abbreviated form as: 

[2 , 1 , 1] = 1 1 1 
2+ 1 +  1 

and [2 ,2] = 1 1 
2+ 2 

The indices have been represented in boldface and each compound 
fraction is easily shown to equal f .  

In general the two intervals associated with each rational number are 
gotten by converting from the l, r-number notation to the L, R -interval 
notation by setting l H L, r H R and adding either a final R or L. By 
convention, we make this representation unique by insisting that there be 
no final index of 1 so that f = [2, 2]. 

14.4.2 Given a continued fraction [2, 1 ,  3] what is its value? By direct 
computation, 

[2 1 3] = -1 -1 _!_ = _! . , , 
2 + 1 + 3 1 1  

In other words, 141 is located in the interval, LLRLLL, and it corresponds 
to the number llrll. Converting to binary, 141 = ( 1 1 0 1 1 )2 = 2 7 ,  or 
number 27 in the Farey tree, located in the 4th row 1 2th number from 
the right. 

1 4.4.3 If the continued fraction is truncated at successive stages in its 
development, the resulting compound fractions approximate the value of 
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the continued fraction. These fractions are called the convergents of 
the continued fraction. For example, the first and second convergents of 4 TI are 

1 
2 

and 1 1 1 
- - -
3 2 +  1 

Of course, the last convergent is the number itself 1
41 • What's more, each 

convergent is the best approximation to the continued fraction with the no 
larger denominator. In other words there is no better approximation to 1

41 
than t with denominator less than or equal to 2, or -i with denominator 
less than or equal to 3 .  

14.4.4 The convergents of 1
41 can be generated directly from Table 14.2 

by either of the following two procedures: 

Locate n in row F1 1 • 
Choose -i to the left of 141 • 

Locate t in row F3 (the top 
of the column). 
Choose t to the right of 1 ·  
Locate � in row F2• 
Choose f to the left of t . 
(Note the left-right-left-. . .  pattern) 

Locate n in row F1 1 • 
Choose i to the right of 141 • 
Locate � in row F8 (the 
top of the column). 
Choose 1 to the left of i . 
Locate t in row F3. 
Choose t to the right of 1 ·  
Locate � in Row F2• 
Choose f to the left of t . 
(Note the right-left-right­
· · ·  pattern) 

In this way the two sequences of convergents to 1
4
1 : 

0 1 1 4 and 0 1 1 3 4 
1 ' 2 ' 3 ' 11  1 ' 2 ' 3 ' 8 ' 11 

correspond to the two continued fraction representations of 141 • It is easy 
to see how this procedure can be generalized to any rational fraction. Try 
• £ 7 lt !Of lO . 
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1 4.4.5 There is an easy and direct way to generate all of the convergents 
of a continued fraction from its indices. Let me illustrate the method for 
[2 , 1 ,  3]: 

a. Write out the indices. The first convergent is gotten by inverting the first 
index ( i.e., 2 )  

2 1 3 
1 
2 

b. The numerator of the second convergent is the second index. To get the 
denominator, multiply the denominator of the first convergent by the 
second index and add 1 .  For example, 

2 1 
1 1 
2 3 

c. If there are any further indices, multiply the index by the previous 
numerator and add the numerator before; the denominator is gotten by 
multiplying the index by the previous denominator and adding the 
denominator before. For example, 

2 1 3 
1 1 4 
2 3 1 1  

It is important to note that the modulus between successive convergents 
is always equal to 1 ,  e.g. , I( 4 X 3 )-( 1 1  X 1 ) 1 = 1 .  

14.4.6 To make sense out of these convergents requires us to interpret the 
continued fraction as a sequence of left and right intervals. For example, t1 
= [2, 1 ,  3] = LLRLLL where 141 is included in the sequence of intervals 
-L, [LL] , [LLR], LLRL, LLRLL, [LLRLLL]. The intervals with the maximum 
number of consecutive L's and R's have been placed in brackets; these 
always form a set of nested intervals (the later intervals inside the earlier 
ones) in which the convergents, marked by arrows, alternate as left and 
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right endpoints. For example, 

LL LLR LLRLLL 
where the convergents are indicated by arrows. 

These nested intervals are shown below. 

[ .. 
1 
3 

5 
14 

] "' 
4 
1 1  

2 
5 

1 
2 

14.4. 7 If I now have a fraction such as 141 , how do I write it as a continued 
fraction? To expand 141 , or for that matter any rational number, as a 
continued fraction, 

a) write it as the inverse of an improper fraction, i.e., 1/14 , (if the number 
is already an improper fraction go to Step b). 

b) write 1j as a mixed number and replace it in a): 
1 
2 + 3 , 

4 

c) repeat Steps a) and b) for t to get: 

1 
2 + 1 

1 + 1 
3 

[2 , 1 , 3] .  

14.4.8 This procedure is equivalent to a process known as the the Euclidean 
algorithm which is based on the familiar division algorithm. To divide a by d 
we get a quotient q and a remainder r: 

qRr 
d � or a = dq + r for 0 ::; r < d .  
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Let's apply the Euclidean algorithm to the fraction 141 •  
I 4 1 1 a. nvert TI to get 4 .  

b. Apply the division algorithm to 1; : 

1 1  = 4 x 2 + 3 ,  i.e. q1 = 2 and r1 = 3 .  

c. Apply the division algorithm to j- : 
4 = 3 X 1 + 1 ,  i.e. , qz = 1 and r2 = 1 .  

d .  Apply the division algorithm to y : 
3 = 1 X 3 ,  i.e. , q3 = 3 and r3 = 0. 

e. Since the remainder in the last step is 0 the process ends. The indices 
of 141 are the sequence of quotients [qr ,  qz, q3] = [2, 1 ,  3] .  

14.4.9 The indices tell how to steer in Table 14.1  from � or t along a 
zigzag path to the rational number of interest. For the indices [2, 1 ,  3] = t1 , 
begin in the 2nd row of the table (Row O) with t directly to the right of � . Move down 1 row to t directly to the left of t .  Then move down 3 
rows (Row 4) to 141 , the number directly to the right of t . This procedure 
begins with � for rational less than t such as 1i .  For indices [ 1 , 2 ,  3] = 

170 , begin in row 1 with t . Then move down 2 rows to -3" directly to the 
left of t . Then move down 3 rows to ?o directly to the right of f . Since 
170 is greater than t , the procedure begins with t . 
14.4. 10 In general, any number a. on the number line between, n and 
n + 1 can be written as the continued fraction: 

a. = [n; ar , az, a3, . . .  ] = n + 1 
a1 + 1 

a2 + 1 
a3 
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or abbreviated as, 

a: = n + 1 1 1 

Here n refers to the number of R's at the beginning of the L, R-sequence. 
If the sequence begins with an L, then n = 0 and we shall omit it and write 
the continued fraction as [at . az, a3, . . .  ] where the ak are the indices. This 
always represents a number between 0 and 1 .  

14.4. 1 1  Consider the decimal representation of a number between 0 and 
1 gotten by randomly choosing its digits. Appendix 14.B proves that for 
such numbers, on the average, the proportion of indices in their continued 
fraction expansions that are odd are 0.693 14  . . .  while the proportion that 
are even are 0.30685 . . .  the difference being 0.38629 . . .  [Adaml] ,  a number 
related to the "little end of the stick (LES)" problem (see Section 9.7).  For 
a random fraction, on the average 50% of the indices are 1 .  Among the odd 
indices, the fraction that are 1 's is 0.72134 . . .  while the fraction that are 
odd numbers other than 1 is 0.2786 . . .  , two other numbers related to the 
LES problem whose ratio is again 0.38629 . . . . Malcomb Lichtenstein [Lich] 
has verified this theorem by generating random numbers on a computer and 
computing their indices. He also did this for the digits of 1t. He discovered 
that, indeed, 50% of the indices equaled 1 .  

14.4. 1 2  In Section 14.4. 1 we saw that rational numbers can always be 
represented by sequences of L, R-intervals and that each rational number is 
the left and right endpoints of a pair of intervals related to the two continued 
fraction expansions of the number. For example, we have seen that i lies 
in the sequence of intervals - L, LL, LLR, and it is the right endpoint of 
LLRL and the left endpoint of LLRR, 

l 
3 LLRL 2 5 LLRR 1 z 
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Next, interval LLRL divides into LLRLL and LLRLR with i the right 
endpoint of the latter; LLRLR divides into LLRLRL and LLRLRR with ! 
again the right endpoint of the later interval. Continuing in this way, we 
find that i is the right endpoint of the sequence of intervals, 

n ,--A--, 
LLRLRRR . .  R, for all n. 

Likewise, we find that ! is the left endpoint of the sequence of intervals, 
n 

,..-----"-----
LLRRLLL . .  L for all n . 

Thus, the intervals contract upon ! from the left in the first case and from 
the right in the second. They are the closest rational numbers to the left 
and right of i in successive rows of the Farey tree. These series of intervals 
can be translated directly to continued fractions. Just count the number of 
contiguous R's and L's. For example, 

n 
,--A--, 
LLRLRRR . . R = 1 1 1 1 

2 +  1 + 1 + n  

n ,..----"-----, 
LLRRLLL . .  L = 1 1 1 -

2 + 2 +  n 

As we take n approaching infinity, we find that the intervals converge upon 
! = [2, 1 ,  1 ]  and ! = [2, 2]. 

In general, any rational number located in the infinite Farey tree 
(Table 14. 1 )  at the location given by the L, R -sequence - can be represented 
by two sequences of intervals 

-- LRRR. . .  R and -- RLLL. . .  L .  ( 1 4.5 ) 

This accounts for the two continued fraction representations of rational 
numbers. 

14.4. 13  In this way we can generate all of the rational numbers. But what 
about the irrationals ? Irrationals differ from rationals in that their infinite 
strings are unique, and correspond to nested intervals of width decreasing 
to 0. All infinite L, R -strings other than Series ( 14.5 ) represent irrational 
numbers. For example, LRLRLRLR . . .  = [ 1 ,  1 ,  1 ,  . . .  ], which is abbreviated 
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[-] 1 . h b 1 1 2 3 5 8 d h as 1 , resu ts m t e num er sequence 1 , I , 3 , 5 , 8 , TI . . . an t e 
corresponding sequence of nested intervals [� .t] . [t .t] . [t ,f] , (! ,f] , . . . . 

1 

j, 
[ -- [ - 1 - 1-] --
1 3 8 5 - -

2 5 13 8 
2 1 
3 1 

This sequence of numbers and nested intervals approaches .; where 
"t = 1+[5 = 1 .6 18  . . . , the golden mean, and has the continued fraction 
expansion, 

1 1 1 1 . . .  
1 + 1 + 1 + 1 + · · · · 

Each of the rational numbers in the approaching series to .; is the best 
approximation to .; with no larger denominator. 

Also note that RLRLRLRL. . .  = [ 1 ;  1 ,  1 ,  1 . .  . ] ,  referring to the number 
line, gives the approaching sequence: 1 ,  f ,  -f , i , � , . . .  to the golden mean 
--r. We also see that --r = RLRLRL. . . = R + LRLRLR . . .  = 1 + .; . 

14.4. 14 I refer to any continued fraction whose convergents form a set of 
nested intervals of the form ---- LRLRLR . . .  after some initial sequence as 
a noble number and symbolize it by --r0. When noble numbers are multiplied 
by 360 degrees, they yield special angles related to the growth of plants 
known as divergence angles. These angles describe the placement of florets 
on the surface of a plant such as the florets that result in the spiral whorls 
of a sunflower. They will be discussed in Chapter 24. For example, the 
irrational number, 

- 1 LLRLRLRL . . = [2, 1 ]  = 2 
r 
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PHYLLOTACTIC PATTERNS 

1/2 

Figure 14.2 A global picture showing the relationship between Farey series and divergence 
angles. Each 0 � � � t corresponds to an angle 360 X � degrees. Number pairs on the edges 
refer to phyllotaxis numbers discussed in Chapter 24. 

is the most prevalent noble number, and it leads to the angle 3r�o = 137.5 
degree The next most important angle is LLLRLRL. . . = [3, l] which, when 
multiplied by 360 yields 99.5 degree. The next angle in importance is 
LLRRLRLR. . .  = [2, 2, l] and gives rise to 1 5 1 . 1  degree. In fact it can be 
shown that all noble numbers �an be represented by the simple formula 
[Mar-K] , 

Po + P1-r -ro = .::....:.--=--=--
qo + q1-r ( 1 4.6) 

where Po , pq1 are any pair of neighbors in Table 14.2 ( i.e., they have qo 1 p p modulus 1 ) . Successive convergents beyond ....Q. and -q1 are found by 
qo 1 
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zigzagging down the Farey tree one row at a time, h = Po � h._ , P1. = h._ 
qz qo ql q3 ql 

� :: , etc. For example, corresponding to f and 1
5
2 , the noble number, 

ro = f:tz� = [2,2,1] , results in the unique zigzag series of convergents: t , f , 5 7 12 TI ,  17 ,  29 '  · •  · ·  

14.4. 15  A global picture of how each of the noble numbers leads to a 
unique divergence angle is shown in Figure 14.2. Notice that t lies at root 
of this tree, and each fraction when multiplied by 360 degree yields an 
angle between 0 degree and 1 80 degree Only the half of the Farey series 
between f and t is needed, the other half corresponds to divergence 
angles from 0 to -180 degree corresponding to spiral whorls in the opposite 
direction. 

Beginning at any fract ion in Figure 1 4 . 2 ,  a d ivergence angle 
corresponding to one of the noble numbers is obtained by zigzagging left 
and right through successive branches of the Farey tree. These sequences 
correspond to the evolution in the growth of a plant. This hierarchy of 
Farey numbers is observed in many physical phenomena, and we shall have 
more to say about it in the the next section and in Chapter 24. 

14.4. 16 The numbers in each row of the infinite Farey tree of Table 14. 1  
can be pictured on an x ,  y-coordinate system as shown in Figure 14.3 where 
x = Numerator and y = Denominator. Notice that the points, when 
connected, take the form of "flames reaching towards heaven" [Adam1] .  
Also notice that the leading points of the flame in  each row correspond to 
h f . 1 2 3 5 d 1 2 3 5 h 1 d t e racuons z ,  3 , 5 ,  8 ,  . . . , an 3 . 5 , 8 , TI , . . .  t e convergents r an 
1 � where r represents the golden mean. 

14.5 Continued Fractions, Gears, Logic, and Design 

14.5 .1  The subject of continued fractions can be elegantly pictured by 
a mathematical structure known as Ford circles (cf. [Rad1] ,  [Rad2]. Each 
rational number t is represented as a circle or "gear" with center at x 
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21 
20 
19 
18 
1 7  
1 6  
15  
14  
13 
12  
1 1  
10 
9 
8 
7 
6 
5 
4 
3 
2 

INFINITE FAREY TREE FRACTIONS MAPPED ON CARTESIAN COORDINATES 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  18 19 20 21 

Figure 14.3 Numbers from the Farey series pictured as "flames reaching to heaven". The 
fraction % is graphed as point (p, q) of a Cartesian coordinate system. Golden mean convergents 
are peak values of the flame. 

coordinate = * , y-coordinate = 2�2 , and radius equal to 2�2 • In this way 
the circle of each fraction is tangent to the x-axis and no two circles cross, 
as shown in Figure 14.4. However, two circles are tangent ("kiss") when 
their modulus equals 1 in the sense of Section 14.3 . 12 .  For example, the 
zigzag pattern of circles marked 1 ,  2, 3, 4 represent the sequence of rationals: 
t , ! , j , � . . . circles that are approaching � . Notice that successive pairs 
in this series have modulus 1 and that the circles form a kissing sequence. 
For any number, its sequence of convergents always form a kissing sequence 
of gears. Although we have been using the term gear in a figurative sense, 
any family of kissing circles actually represents a series of compatible gears 
in the sense that their teeth can mesh with each other (see Appendix 14.C). 
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0.4 

0.3 

0.2 

0. 1 

-0.0 

-0. 1  

-0.2 

-0.3 

-0. 4 

-0.5 L____!L_____.l _ ___l _ _l._ _ __L _ ____L_......L... _ _L-_-'----' 
0.0 0 . 1  0.2 0 .3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0 

Figure 14.4 A sequence of Ford circles. Each Farey fraction f is represented by the center of 

a circle with coordinates ( f ,  2�2 ). Farey pairs with modulus 1 are tangent ("kissing circles"). 

The sequence of circles labeled 1 ,  2, 3, 4 represent fractions: t , t , 1 , � from the Fibonacci 
series. 

14.5.2 Notice that if the two golden mean sequences: LRLRLR . . . and 
RLRLRL . . .  are extended to double sequences: . . .  LRLRLR . . .  and 
. . .  RLRLRL. . .  they are identical to the two imaginary numbers I and ] 
introduced by Kauffman to represent the extension of Boolean logic to 
self-referential systems (see Section 1 3 .6 and Appendix 1 3 .A). For that 
matter, any sequence of the form: LLRRLLRRLL. . .  or LLLRRRLLLRRR . . . 
etc. can be seen to be self-referential. Each of these numbers corresponds 
to a continued fraction with 1 ,  2, 3 . . .  or n down the diagonal, i.e., [n] (see 
Section 22.10) .  For n = 1 ,  this results in the � .  It is only fitting that the 
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case of n = 2 is called the silver mean. The others are called nth silver means 
(see Chapter 22). We have seen in Chapter 7 that Cl] and [Z] are important 
to the study of architectural proportion. 

14.5.3 If L is represented by the symbol d and R by b then LRLRLR . . .  

represents the pattern, . . . LRLRLR . . . , or, 

. . .  dbdb I dbdb . .  . where M = Mirror. 
M 

Compare this with the pattern for LLR, i.e., . . . LLRLLRLLR . . . , or, 

. . .  ddbddbddb . . . . 

The first has mirror and translational symmetry where a mirror is placed 
between each pair of letters and each pair of symbols comprises a unit of 
translation. If the pattern is reflected in a mirror it replicates itself; the 
pattern is also invariant when translated through a pair of symbols. It is not 
surprising that a self-referential system has mirror symmetry. The second 
pattern has translation but no mirror symmetry. These two kinds of patterns 
represent all of the line symmetries [Kap3]. Only the golden and silver means 
have mirror symmetry (are self-referential} ,  the sequences formed by all 
other irrationals have translational symmetry only. 

14.6 Farey Series and Natural Vibrations 

The Greeks spoke of the harmony of the spheres in a kind of metaphorical 
way. Plato felt that an understanding of the structure of the universe lay 
within the grasp of the human mind, if only humans could think about it 
in the correct manner. As we saw in Chapter 5, Kepler actually went so far 
as to attribute a musical phrase to each separate planet and to the ensemble 
of planets as they whirled about the sun. Modem science has shown that 
Kepler's ideas were not valid as he stated them. Yet scientists have recently 
been reporting phenomena in which the vibrations or oscillations of complex 
chemical reactions, quantum effects, vibrations of the beating hearts 
of chicken embryos, the variation in the intensity of light from binary 
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Distance from sun (astronomical units) 
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Orbital period (Jovian synodic years) 

Figure 14.5 Number of asteroids plotted against distance from the sun (in units of Jupiter's 
orbital period). 

stars, gaps in the asteroid belt, as well as the musical scale, and many 
other phenomena can be read directly from the Infinite Farey Sequence 
(cf. [Bakl] ,  [Adaml] ) .  

The distribution of catalogued asteroids at various distances from the 
sun [Pet] are recorded on the graph shown in Figure 14.5. According to 
Kepler's third law, the distance from the sun of an orbiting body depends 
only on the period of revolution; the greater the distance from the sun, the 
greater the period of revolution. The distance from the sun in Figure 14.5 
is reckoned as a fraction of the period of Jupiter's orbital period. It is a 
remarkable discovery that there is an absence of asteroids with the following 
. 1 b. 1 · d k I 2 3 I 3 2 3 stmp e or tta peno s, h : 3 , 5 ,  7 , I ,  5 ' 3 ' 4 · 

Checking these fractions for unimodularity in the sense of 
Section 14.3 . 1 2, we see that all of them have modulus 1 and can be found 
as adjacent values of rows F6 and F7 of Table 1 4.2. Then we invert each 
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of the fractions to get x-values k and use the formula I get the h '  w to 
y-values, i.e., 

3 5 7 2 5 3 4 x - values : -1 2 3 1 3 2 3 
y - values : 2 8 18  2 18  8 18  

At  each of these points a Ford circle (see Section 14.5 . 1 ) can be drawn 
with a radius of y units. Adjacent circles will then be tangent to each other 
and to the x-axis. 

Without going into explanations of a quantum phenomena known as 
the Fractional Quantum Hall Effect (FQHE) [KLZ] or oscillating chemical 
vibrations known as the Belousov-Zhabotinsky Effect (BZ) [Hal] , let us look 
at the observed resonant frequencies of their vibrations. 

With the exception of i the other FQHE fractions appear in row Fu of 
Table 14.2 with modulus 1 between adjacent fractions. As for the BZ 

. ll f . I I  14 1 7 . F F h reactton, a racttons except: 15 , 19 , 23 appear m row I I ·  urt ermore, 
the exceptions can be derived from 181 and i as follows: �� is the mediant 

f 8 d 3 . 8 li'I 
3 l l  14 · h d' f II  d 3 h'l 1 7  o TI an 4 ,  I.e., TI -:±7 4 = 15 , 19 ts t e me tant o 15 an 4 ,  w 1 e 23 

is the mediant of :� and � .  
Why is it that the Farey series is a kind of "book of nature"?  In 

Chapter 25 we shall see that, to some degree, this can be explained by 
an important phenomenon know as mode locking and a mathematical 
structure called the Devil's staircase. Through the Devil's staircase, the Farey 
series will be shown to define a hierarchy of rational numbers in which 
numbers higher in the Farey table are more "stable" in some sense than 
lower numbers, e.g., J is the most stable of rationals since it is highest in 
the table [Kap14].  

Table 1 4.4 records the continued fraction values for FQHE and BZ. 
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Table 14.4 Resonant values 
of the fractional quantum 
Hall effect. 

FQHE 

t [1 1 ]  

6 TI [1 1 5] 

5 [ 1 1 4] 9 
4 [1 13] 7 
3 [1 1 2] 5 
5 [1 1 12] 8 
7 TI [ 1 1 13] 

1 [1 1 1] 

BZ 

7 10 [ 121 

� [ 12 1 1 ]  

_§_ [ 1 2 1 2] 1 1  
1 1  [ 12 13] 15 
14 [ 1 2 14] 19 
ll [ 1 2 1 5] 23 
� [ 12 1 ]  

What is involved here? This appears to be a sorting mechanism akin to the 
way electrons are filled in the outer shells of atoms. When I present, in 
Chapter 24, the manner in which patterns of pine cones, pineapples, and 
the florets of a sunflower organize themselves, a similar sorting mechanism 
will be seen. 

14.7 Conclusion 

Number can reveal information about the natural world from quantum 
phenomena to that of the universe. Just as number provides a framework for 
patterns of plant growth, we can uncover the secrets of number only by 
holding it up to the light in the proper way. Natural phenomena express 
themselves through number itself without the need to measure. Observation 
and measurement succeeds only in verifying what was already present within 
number itself. 
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Appendix 14.A Euler's y-Function 

The jump in the number of rationals from row n - l to row n of T able 14.2 
is computed by Euler's y function: 

( 14.A1 ) 

where PI >  p2 , . • •  are the prime factors of n with no repeats. In  general, this 
jump is greatest when n is a prime number, i.e. ,  it is divisible by only itself 
and 1 .  When n is a prime, clearly n - 1 new rationals are added to the 
previous row, .l , 1. , . . .  , n -1 

• For example, if n is the prime number 23 , n n n 
Equation ( 14.A l )  yields, y(23) = 22. However, if n = 24 = 2 X 2 X 2 X 3,  
then the prime factors of 24 are are 2 and 3 and, 

Thus, F23 jumps by 22 new members while F24 increases by only 8: 2
14 , {5 , 

7 1 1  13 17 19 d 23 24 ' 24 ' 24 ' 24 ' 24 ' an 24 • 

So we see that the Farey sequence is intimately connected with prime 
numbers. The 19th century mathematician J .] . Sylvester discovered a formula, 

:;11 , that approximates the total number of rational numbers in the nth row 
of the Farey sequence or I Fn I  (or Fn for short) as n � oo. Now we can 
determine the probability, P, that any two randomly chosen integers are 
relatively prime. Since all fractions in the Farey sequence have relatively 
prime numerators and denominators, all we have to do is compute the total 
number of fractions with denominator less than or equal to n, Tn, regardless 
of common factors, and the probability that a pair or integers less than or 
equal to n is relatively prime is: 

( 1 4.A2) 

To compute Tn list the fractions with denominator equal to n. 
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For n = 1 : Q .  I ' 
n = 2  : _Q l .  2 ' 2 '  
n = 3  : _Q l l .  

3 ' 3 ' 3 ' 

n = 4  : Q l l l .  4 '  4 '  4 '  4 '  
. . .  etc. 

n(n + 1) 
We see that Tn equals the nth triangular number or 

2 
, e.g., T4 = 

4 X f = 10. From ( 14.A2) we find that, 

6 

and as n � =, P = :z = 0.6079 . . . . So in an asymptotic sense, about 6 1% 
of the number pairs are relatively prime. 

The relationship between Farey sequence, prime numbers, and the Euler 
function may be connected with recent research on the spacing of energy 
levels of Hydrogen in a magnetic field (cf. [Berr] , [Gut] } .  

Appendix 14.B The Relation between Continued Fraction Indices 

and the Little End of the Stick Problem 

Gary Adamson [Adaml] has shown that the frequency in which indices of 
continued fractions appear is related to the "little end of the stick problem". 

Section 14.4.7 described a procedure to convert a proper fraction x 
to a continued fraction. This amounts to computing l mod 1 .  (See X 
Appendix 23.A for a discussion of mod. ) In other words, invert the fraction, 
extract the integer part and discard the fractional part. The integer part is 
the index of the continued fraction. Repeat this operation on the fractional 
part of the number. It is easy to see that if x is between t and 1 (an interval 

of length -2
1 ) , l mod 1 ( i.e., the fractional value of l) yields an index of X X 

1 ;  if x is between 1 and t (an interval of length i ) , the index is 2; 
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between :\- and t (an interval of length /z ) ,  the index is 3; etc. Therefore 
the unit interval is subdivided into intervals corresponding to the following 
lengths and indices: 

1 2 3 4 5 6 

1 1 1 1 1 1 - + - + - + - + - + - + · · · = 1 .  
2 6 1 2  20 30 42 

( 1 4.Bl ) 

Next we examine the series for ln 2 (where ln is the abbreviation for loge). 
It is shown in advanced mathematics textbooks that, 

1 1 1 1 1 1 
ln 2 = 1 - - + - - - + - - - + - . . . . 

2 3 4 5 6 7 

Grouping these by pairs, we get 

1 1 1 - + -+ -. . .  
2 1 2  30 

( 14.B2) 

which are alternate members of Series ( 14.B l ) ,  being all of the odd terms. 
Series ( 14.B l )  is represented graphically within the unit square of Figure 
14.Bl . The white area in the unit square equals the sum of the odd terms 
in Series ( 14.B1 ) .  Therefore, using calculus to compute the area under the 

hyperbolic function y = l-x , 
X 

White Area = Odd Indices = ln 2 = 0.69314 . . .  , 
Black Area = Even Indices = 1 - ln 2 = 0.30685 . . . .  

I 
I - x I 
- --t-.  X l 

l 
I 
I 
I 
I Figure 14.B 1 
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In other words, the probability of getting an odd continued fraction 
index is 0.693 . . .  and for an even index, 0.306 . . .  (the difference being 
0.38629 . . .  ) .  Now look at just the odd indices. The portion of the white 
area to the left of the dotted line in Figure 14.B1 equals t the area of the 
unit square and represents the probability that indices equal 1 .  As a 
percentage of the white area, this equals 0.7213 . . .  , which represents the 
probability that an odd index is 1 .  The white area to the right of the dotted 
line represents the probability that odd indices are other than 1 .  As a 
percentage of the white area this equals 0.27865 . . . .  Therefore, these 
probability sets match our Little End of the Stick Problem (see Section 9.4) 
where we showed that 

Long end of the average stick = 0.72134 . . .  , and 
Short end of the average stick = 0.27865 . .  . 

with the ratio being equal to 0.38629. So we see that these numbers arise 
in many different contexts. 

Appendix 14.C "Kissing" Gears 

Each rational number f can be represented as a Ford circle or gear. When 
the modulus of two fractions equals 1 ,  the corresponding Ford circles are 
tangent. These are referred to as "kissing" circles or gears. Consider the 

f k. . 1 3 5 8 h" 
1 

sequence o 1ssmg gears : 2 ,  5 , 8 , 13 , . . .  approac mg r . 
In Figure 14.C1 we see a pair of gears corresponding to ! from this 

sequence. Gear 1 has a radius 3 units and has three teeth and three 
indentations or slots numbered : 0, 1 ,  2, while gear 2 has a radius of 5 units 
and has five teeth and five slots numbered: 0, 1 ,  2, 3, 4. Each tooth of a gear 
with n teeth and radius n units spans a length of 1t units since, 

circumference 27tn . T oath length= x number of teeth = -- = 1t un1ts . 
2 2n 

Since the teeth of gear 1 match the slots of gear 2, and vice versa, the 
gears mesh. We find that as gear 2 turns counterclockwise through 3 complete 
revolutions, gear 1 turns clockwise through 5 revolutions. Alternatively, 
hold gear 2 stationary, and dip tooth 0 of gear 1 into a red dye and place 
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KISSING GEARS 

21T • 5  
= IT 10 

21T • �  
= IT 6 

Figure 14.C l Meshing gears. Five clockwise rotations of a 3-tooth gear produces three 
counterclockwise rotations of a 5-tooth gear. 

it in slot 0 of gear 2, marking the slot with the red dye. As gear 1 rotates 
clockwise, the next slot of gear 2 that is marked by the red dye will be slot 
3, and then, after another rotation of gear 1 ,  slot 1 ,  followed by slots 4 and 
2, before the marked tooth returns to its original position after making five 
complete rotations. Whenever, the pair of tooth numbers (3 and 5 in this 
case) are relatively prime (both divisible by only 1 )  each slot of gear 2 will 
be marked by the dye, otherwise there will be unmarked slots. The movement 
of the marked point traces a star pentagon {1-}. (See Figure 24.9a for a 
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diagram of H} ). During one rotation of gear 1 ,  the marked point progresses 
through an angle of � x 360 degree about the circumference of gear 2, an 
approximation to � x 360 degree. 

The same holds, in general, for any other kissing sequence {cik } ,  the 
continued fraction convergents of a. Gear 1 rotates Pk times clockwise 
while gear 2 rotates Qk times in a clockwise direction. During a single 
progression of gear 1 about gear 2, gear 1 turns through an angle of 3k x 
360 degree on the circumference of gear 2, where � approximates the 
irrational number a. The sequence of turns follows the sequence of vertices 
of star polygon { �: }. (See Section 22.5 for a discussion of star polygons. ) 
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15. 1 Introduction 

God made the integers; 
all else is the work of man. 

Leopold Kronecker 

In the last chapter rational numbers were expressed as continued fractions, 
and each rational number was related to an integer expressed in binary 
notation. A mathematical structure known as Gray code gives another way 
to relate rational numbers to integers. In this chapter, I will explore Gray 
code and its relationship to an old puzzle known as the Towers of Hanoi. 

15.2 Binary Numbers and Gray Code 

Any positive integer ( i.e., counting number) can be represented in terms of 
the numbers 0 and 1 .  In the binary system numbers are represented by a 
kind of "decimal" system based on the number 2. In this system any integer 
N is represented by N = (��-l · . . aza1aoh where 

and ao, al > az, . . . , £ln can be either 0 or 1 .  For example, 

( 1 1010}z = 2 + 8 + 1 6  = 26 . 

340 
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Table 15 . 1  Rational fractions, Gray code, and the Towers of Hanoi. 

Tower of Hanoi 

TOH Cont. Frac. Positions 

N Binary Modularity Gray +0 Sequence Indices Fraction Pegs A B c 

0 0 0 0 [0] 0 (Start) 

1 0 [2] 1 
2 

2 1 0  1 1  0 2 [1 ,2] 
2 2 3 

3 1 1  3 10  0 [3] l 1/2 3 

4 100 1 10 0 3 [ 1 ,3] 3 
3 1 /2 4 

5 101  3 1 1 1  0 [1 , 1 ,2] 3 3 2 5 
6 1 10 5 10 1  0 2 [2,2] 2 

2/3 5 
7 1 1 1  3 1 00 0 [4] 

1 
1/2/3 4 

8 1000 1 100 0 4 [ 1 ,4] 4 1/2/3 4 5 

9 1001  3 1 10 1  0 [1 ,2 ,2] 2 2/3 1/4 7 

10  lOlO 5 1 1 l 1  0 2 [ 1
' 1 ' 1 ,2] 

5 
2 3 1 /4 8 

1 1  101 1 3 1 1 10 0 [ 1 , 1  ,3] 4 1/2 3 4 7 
1 2  1 100 7 1010  0 3 [2,3] 3 1/2 3/4 7 
1 3  1 10 1  3 101 1 0 [2 , 1 ,2] 3 2 3/4 8 
14 1 1 10 5 1 001  0 2 [3 ,2] 2 2/3/4 7 
1 5  1 1 1 1  3 1000 0 [5] 1 1 /2/3/4 5 
1 6  1 0000 1 1000 0 5 [1 ,5] 

5 
5 1/2/3/4 6 
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Table 1 5 . 1  (Continued) 

Tower of Hanoi 

TOH Cont. Frac. Positions 

N Binary Modularity Gray +0 Sequence Indices Fraction Pegs A B c 

1 7  10001 3 1 1001 0 [ 1 ,3 ,2] 7 5 2/3/4 9 
1 8  10010 5 1 101 1 0 2 [ 1  ,2, 1 ,2] _§_ 2/5 3/4 1 1 

1 9  1001 1 3 1 1010 0 [1 ,2,3] 7 1/2/5 3/4 100 

20 10100 7 1 1 1 10 0 3 [I , 1 , 1 ,3] � 3 1 /2/5 4 1 1  

2 1  10101  3 1 1 1 1 1  0 [ 1 , 1 , 1 , 1 ,2] 8 3 2/5 1 /4 13 

22 101 1 0  5 1 1 101  0 2 [ 1 , 1 ,2,2] � 2/3 5 1/4 1 2  
23 101 1 1  3 1 1 100 0 [ 1 , 1 ,4] 2 1 /2/3 5 4 9 
24 1 1000 9 10100 0 4 [2,4] 4 1/2/3 4/5 9 
25 1 1001 3 10 101  0 [2,2,2] ..2. 2/3 1 /4/5 12  

26 1 1010 5 101 1 1  0 2 [2, 1 , 1 ,2] ..2. 3 1/4/5 2 13 

27 1 101 1 3 101 10  0 [2 , 1 ,3] 4 3 4/5 1/2 TI 
28 1 1 100 7 10010 0 3 [3,3] 3 3/4/5 1 /2 TO 
29 1 1 101  3 100 1 1  0 [3, 1 ,2] _1_ 3/4/5 2 1 1  

30 1 1 1 10 5 10001 0 2 [4,2] l 2/3/4/5 9 

3 1  1 1 1 1 1  3 10000 0 [6] 1 1/2/3/4/5 6 
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The integers from 1-3 1 are listed in the first column of Table 1 5 . 1 .  
However, the binary system has one disadvantage. Notice that more than 
one digit changes its value between successive numbers. For example, integer 
3 equals binary 1 1  while integer 4 equals binary 100, a change in the units, 
2's and 4's places. Gray code is a system which avoids this problem [Gard3] .  
The numbers 1-3 1 are represented in column 4 of Table 15 . 1  in Gray 
Code. The sequence of numbers is organized so that only a single digit 
changes its value from one integer to the next, and this change occurs in 
the least significant digit to give a number not already listed. Column 5 of 
Table 15 . 1  indicates the Gray code position in which this change occurs 
( this is also the binary position in which a 0 changes to 1 ) . If the number 
of 1 's in Gray code is even, then the next number replaces the 0 with a 1 ,  
or 1 with 0 in the last place; if the number of 1 's is odd then change the 
0 to a 1 ,  or 1 to 0 in the place to the left of the rightmost 1 to get the next 
number. For example, integer 14 equals Gray code 1001 which has two 1 's 
(even). Therefore integer 1 5  Gray code 1000 {change from 1 to 0 in the 
last place) .  Integer 13 equals Gray code 101 1 has three 1 's (odd) .  Therefore 
integer 14 equals Gray code 1001 ( the 1 next to the rightmost 1 in 13 has 
been changed to 0). 

Note that the Gray Code numbers in Table 15 . 1  are organized in blocks 
of size: 1 ,  2, 4, 8, . . .  , zn with the number of digits equal to n +  1 .  In this way, 
each Gray code number is uniquely associated with a decimal number. Also 
notice that each block reflects the digits of the previous block as in a mirror 
with the exception of the leading 1 or 0. For this reason the sequence is 
sometimes referred to as refiecting Gray Code. Figure 15 . 1  recreates the Gray 
Code as a design. This design is a template for recreating Gray Code up to 
7 digits. To read this wheel ,  the black areas represent 1 's, while the whites 
are O's. In the outermost circle each black area and space represent a pair 
of 1 's and O's. Gray code numbers are read radially from the innermost 
black area to the outer ring. Reading clockwise from the top, the first 
number is 1 the next number is 1 1 ,  then 10 and 1 10. In this way the Gray 
code sequence listed in Table 15 . 1  can be reconstructed. In Appendix 
15 .A, instructions are given for changing binary to Gray Code and Gray 
Code to binary. 
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Figure 15 .1  Gray code design. 

15.3 Gray Code and Rational Numbers 

I will now correlate each Gray code number with a rational number 
from the Infinite Farey Tree represented by its continued fraction (see 
Section 14.4) by using the following set of deflation rules: 

(a) Add a 0 to the end of the Gray code number, as shown in column 5 
of Table 1 5 . 1 .  This insures the uniqueness of the continued fraction 
representation by making the last index greater than 1 (see ( 14.4. 1 ) ) .  

(b) Then, let 1 � 1 ,  
0 � 2, 

100 � 3, etc., 
and proceed from left to right in the Gray code to determine the 
sequence of continued fraction indices, e.g. Integer 24 equals Gray code 
10100. Add a zero to get, 

1 4 10 1000= [2 4) = - = - . ' 2 + 1  9 4 

Try this for other Gray code values listed in Table 1 5 . 1 .  
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Figure 15.2 Adamson's Continued Fraction Wheel maps Gray code to Farey sequence. Read 
the sequence of I 's and O's outwards from the center to each fraction to get the Gray code 
equivalent. 

Gary Adamson illustrates this mapping of Gray Code to the Infinite 
Farey Tree with his Continued Fraction Wheel shown in Figure 15 .2. Each 
ring of this Gray Code wheel corresponds to a row of the Infinite Farey 
Tree (see Table 14. 1 ). The corresponding Gray Code is found by reading 
the sequence of 1 's and O's outward from the center in a straight line to the 
desired fraction. For example, a straight line from the center to the arrow 
yields 10001 1 1  for which the corresponding continued fraction is found by 

adding one zero, i.e., 10001 1 10 = 1000 1 1 10 = [4, 1 ,  1 ,  2] = ]3 . 
The continued fraction can also be derived from the binary 

representation. As an example, Gray code 1000 1 1 1  can be converted to 
binary 1 1 1 1010 as shown in Appendix 15 .A and directly translated to 
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[4, 1 ,  1 ,  2] by the method described in Section 14.3. 13 ,  i.e. ,  duplicate the 
last digit and count contiguous groupings of 1 's and O's, e.g. 

1 1 1 1 0 1 00 
4 1 1 2. 

Referring to Table 1 5 . 1 ,  the following observations can be made about 
the indices of the continued fractions: 

a) The indices of the nth block sum to n + 1 and represent all of the 
ordered sequences of indices from 1 to n + 1 with final index greater 
than 1 ,  e.g. , the indices of block 3 sum to 4 : [ 1 ,  3], [ 1 ,  1 ,  2], [2, 2] , [4] . 

b) The convergents of � are found approximately one-third down the 
block and have indices of all 1 's except for a final 2; the convergents of 

r\ are found approximately two-thirds down the block and have indices 
of all 1 's except for an initial and final 2. These two sets of indices are 
among the most dispersed of all continued fractions in that block. For 

example, for integer block 8-15 , L-tx8j = 2 and Ljx 8j = 5 where LrJ 
is the notation for "the greatest integer less than r". Therefore the 

convergents of � and -r\ , i and -i , are positioned at integer values 

8 + 2 = 10 and 8 + 5 = 13 where -i = [2, 1 ,  2] and i = [ 1 ,  1 ,  1 ,  2], the 
two most dispersed continued fractions among positions 8- 1 5 .  

15.4 Gray Code and Prime Numbers 

Gray Code is intimately related to prime numbers. In fact, to find the 
integer corresponding to a Gray code number, take any Gray code number 
and delete the first "1" starting at the left and replace the "O's" with the 
prime number from the sequence 2, 3, 5 , 7, 1 1 , . . . . The integer associated 
with this Gray code number is the product of these primes. Thus, 1 1010 
becomes, 

2 3 5 7  - - - - = 3x7 = 2 1 
1 0 1 0 
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Figure 15 .3 Adamson's Prime Number Gray Code Wheel maps Gray code to numbers composed 
of prime factors with no repeating primes. The prime factors of any number are located at the 
positions of the zeros of its Gray code equivalent. 

Adamson's Prime Number Gray Code Factor Wheel is shown in Figure 1 5.3. 
This wheel makes use of the Fundamental Theorem of Arithmetic which states 
that any positive integer z can be written as a product of its prime factors 
Pt , P2, p3, . . .  , each raised to the appropriate power r1 , r2, r3 , . . .  , 

The Factor Wheel considers only integers represented by primes to the 1 st 
power, i.e. ,  the r's are all 1 .  The probability that a positive integer has no 
repeated primes can be shown to be identical to the probability that two 
integers are relatively prime. Appendix 14.A shows that this probability is 
approximately equal to 6 1%. 
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In this wheel each ring of 2n units is composed of the product of various 
combinations of the products of the first n primes, 2 X 3 X 5 X . . .  X Pn ( the 
highest prime for each row is indicated by the p radius) .  For example, all 
numbers in the circle labeled 5 are divisible by 2, 3, and 5. To convert a 
Gray code number to its corresponding integer, draw a line from the center 
( ring zero) to the number, noting the sequence of 1 's and O's in each 
compartment along the way. Then replace all O's with the highest prime in 
each circle, e.g., for 1365 (arrow) 

1 2 3 5 7 1 1 13 
- - - - - - - = 3x5x7x13 = 1365 . 
1 1 0 0 0 1 0 

Since the number to the left of p has all O's, its value is the product of all 
primes up to 13  or 30030. Therefore any number on the wheel is a factor 
of 30030. In fact, from the decomposition of 1365 into primes, it is evident 
that 30030 = 1365 x 22. (Can you see why?) 

15.5 Towers of Hanoi 

A puzzle known as the Towers of Hanoi (abbreviated TOH),  an invention 
of the French mathematician Edouard Lucas in 1883 , is rich in geometrical 
and numerical relationships [Gard1 ,3] ,  [Hin]. In this puzzle, disks of 
decreasing s ize are p laced on three wooden pegs, as shown in 
Figure 1 5 .4. The poles are arranged clockwise as seen from above in the 
order A,B,C. The object of the puzzle is to transfer the disks from one peg 
to another in the minimum number of moves, one at a time, in such a way 
that a smaller disk always lies atop a larger one. For example, for three disks 
labeled 1 ,  2, 3 from small to large lying initially on peg A, the puzzle is 
solved by the following sequence of moves. 

Move 1 to peg B, 2 to peg C, 1 to peg C, 3 to peg B, 1 to peg A, 2 to 
peg B, 1 to peg B. 

The moves involve transferring the disks in the following order of their 
numbers: 1 2 13 12 1  or 7 moves. The sequence for 4 disks is 1 2 1 3 1 2 14 12 13 12 1  
or 1 5  moves. In  general, n disks require 2n - 1 moves. In  the above example, 
note that odd numbered disks always move a single step in a clockwise 
(CW) direction while even numbered disks move a single step in the 
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(a) 

TOP VIEW 

(b) 

Figure 15.4 The Towers of Hanoi puzzle. 

counterclockwise (CCW) direction, e.g. , disk 1 moves initially from peg A 
to peg B ( c lockwise)  while d isk 2 moves from peg A to peg C 
(counterclockwise) .  With the prescription that odd numbered disks move 
CW while even numbered disks move CCW the solution to the TOH 
problem is unique. 

These moves can be related to Gray Code. In order to understand these 
relationships, we must first reconsider the n-dimensional cube described in 
Section 6.6. The sequence of winning moves for the Tower of Hanoi puzzle 
is also the sequence of movements along a Hamilton path of an n-dimensional 
cube. The Hamilton path through any connected set of edges and vertices 
is a route through the edges that visits each vertex without revisiting a 
vertex (although the edges may be retraced and all edges need not be 
traversed) .  For example the Hamilton paths for the 1, 2 ,  3, and 4-D cubes 
are shown in Figures 1 5 .5a, b ,  c, d. ( See Section 6 .6 ) .  These paths 
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• • 

(a. )  

( d ) 

• 

0 
( b ) 

2 
( e ) 

{ c )  

Figure 15.5 (a,b,c,d) Hamilton paths for 1 ,  2, 3 ,  and 4-dimensional cubes are represented by 
the sequence of edges oriented as shown in (e). For the 3-dimensional cube the sequence 
1 2 1 3 1 2 1  is the winning strategy of the Towers of Hanoi puzzle with three disks; the Hamilton 
sequence of the 4-dimensional cube 1 2 13 1 2141213 1 2 1  is the winning strategy of TOH for four 
disks. 

are represented by the sequence of darkened edges oriented as shown in 
Figure 15 .5e. For example, the sequence of directions along the Hamilton 
path of the 3-dimensional cube in Figure 1 5  .Sc is 1 2 1 3 1 2 1  and is identical 
with the winning strategy for TOH with three disks. The winning strategy 
for the TOH with four disks is 1 2 1 3 1 2 14 1 2 1 3 1 2 1  and is represented by the 
Hamilton path of the 4-dimensional cube in Figure 15 .5d. 

In Figure 1 5 .6 the 3- and 4-dimensional cubes have been placed in 
cartesian coordinate systems and the vertices are labeled by 3 or 4 
coordinates. Notice that by adding a leading 1 ,  the sequence of moves 
reproduces the Gray Code of the numbers 4-7 for the 2-dimensional cube, 



Chapter 1 5  Number: Gray Code and The Towers of Hanoi 35 1 

8- 1 5  for the 3-dimensional cube, and 1 6-3 1 for the 4-dimensional cube in 
Table 15 . 1 .  So we have the connection between Gray Code and TOH. 

The last column of Table 1 5 . 1  correlates the positions of the TOH for 
n disks with Gray Code. In Table 1 5 . 1  the notation, 1 /2/3, denotes disk 1 
on 2 on 3 all on one of the three pegs. The notation, 1 2/3 , means that disc 
1 is on one peg while 2 is on top of 3 on another of the three pegs. I assume 
that all n disks lie on peg A in the starting position. 

For example, the correct movements of 3 disks from peg A to peg B in 
the above example can be read directly from the last column for numbers 
0-7 in column 1 .  Since disk 4 is now the top disk on peg A it moves to 
peg C (even disks move counterclockwise) ,  and numbers 0- 1 5  mark the 
solution to the 4 disk problem in which disks 1 ,2 ,3,4 move from peg A to 
peg C. Likewise, 0-3 1 list the position for the movement of 5 disks from 
peg A to peg B. This process can be continued ad infinitum. 

To convert TOH position directly to Gray Code follow these rules: 

( i) begin at the rightmost digit of the Gray Code; 
( ii) if disk n lies atop n + 1 then the nth place from the right gets a 0; 
( iii) if disk n does not lie atop disk n + 1 then it gets a 1 .  

For example consider, 1 /2/3 4/5. Disk 1 lies on 2 ,  2 lies on 3 ,  3 does not 
lie on 4, and 4 lies on 5. Therefore the Gray Code is 10100. You can also 
carry out this process in reverse and reconstruct the TOH position from the 
Gray code. In Appendix 15 .A a procedure is given for converting a binary 
number directly to its TOH configuration. 

There is an even more intimate relationship between Gray code, binary, 
and TOH. For the Nth move in the optimal TOH transfer: 

1 .  The Gray code value corresponds to the number of moves per disk. 
2. The binary representation corresponds to the cumulative total of moves 

for all disks. 

To see how this works, consider the 24th move in the optimal TOH 
transfer: 

a. Write decimal 24 as binary 1 1000. 
b. Label the disk sizes, left to right, from large to small, i.e., 5, 4, 3, 2, 1 .  
c. Starting on the left with binary and proceeding to the right, if 0 then 

double previous result, if 1 then double previous result and add 1 .  This 
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Figure 15.6 Cartesian coordinate representations of 1 ,  2 ,  3 ,  and 4-dimensional cubes. 
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gives the cumulative total: 1 ,  3, 6, 1 2 , 24. The cumulative totals 
correspond to the integer values of the homologous binary numbers: 1 ,  
1 1 ,  1 10, 1 100 and 1 1000. 

d. The differences in successive values of the cumulative total correspond 
to the number of moves that the nth disk moves up to the 24th move 
during the optimal TOH transfer. 

disk 5 4 3 2 1 
binary 1 1 0 0 0 

cumulative total 1 3 6 1 2  24 
# of move per disk 1 2 3 6 1 2 

Gray code 1 0 1 0 0 

The cumulative total of TOH moves gives an alternate way to change 
a number from binary to decimal, always the last entry. Also notice that the 
parity (even -7 0, odd -7 1 )  of 1 ,  3 ,  6, 12 ,  24 and 1 ,  2 ,  3 ,  6, 1 2  reproduce 
binary and Gray code, respectively for 24. This procedure follows directly 
from the Farey sequence. In Table 14.3 successive numbers from the infinite 
Farey true are labeled with the counting numbers. The cumulative total is 
represented by the integers on the unique zigzag path from 1 to the decimal 
value (24 in this case) and the numbers of moves per disk by the differences 
in these numbers. 

This procedure is quite simple and general. Check it for the 22nd TOH 
move corresponding to binary 10 1 10. Find the number of moves for each 
disk and the cumulative total. 

The pattern of winning moves of TOH arise from the moduli of the 
numbers in each row of the Infinite Farey Tree of Table 14. 1  (see Section 
1 4.3. 12 ) .  They are listed for each block in column 3 of Table 1 5 . 1 .  For 
example, the sequence of moduli in Row 3 is 3537353, e.g., 

1 � � 1 = 3, 1 � � 1 = 5, etc. 

This is equivalent to the TOH sequence 1 2 13 1 2 1 ,  where 

1 H 3, 2 H 5, 3 H 7, 4 H 9, . . . . 
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The winning moves for the TOH are also buried within each block of 
binary and Gray Code sequences in column 5 of Table 15 . 1  where they 
determine the place in which 0 changes to 1 or 1 changes to 0 in successive 
binary or gray code representations as described in Section 15 .3 .  For example, 
the integers from 1-7  generated by these rules give rise to the sequence: 
1 2 13 12 1  while the integers 1 - 15 generate: 1 2 13 1 2 1412 1 3 1 2 1 .  

Notice that the TOH position with the greatest dispersion of disks 
always corresponds to the Gray Code value with all 1 's, except in the first 

and last positions, and is a convergent of i or r12 • For example, a glance 

at Table 15 . 1  reveals that within the 16-block, 183 and 153 are [1 1 1 1 2] and 
[2 1 1 2] respectively. 

Also observe that the number of disks on the three pegs of the TOH 
puzzle that correspond to the convergents to the golden mean are the Mod 
3 clock (see also Appendix 23.A). In this clock with three hours, noon 
corresponds to 3, 6, 9, . . .  , 1 o'clock to 1 ,  4, 7, . . .  and 2 o'clock to 2, 5, 8, . . .  , 
as shown in Figure 15 .7 .  Observe this pattern in Table 15 . 1  for all TOH 
positions corresponding to all 1 's in Gray code. This mod 3 clock also arose 
in Section 12 .7  in connection with the ( 10, 3 )  knot which generated Ten en's 
dimpled sphere. It is quite extraordinary that a simple puzzle like TOH 
should be so rich in mathematical relationships. It has also been shown that 
TOH is structurally identical to Pascal's triangle (cf. [Hin] , [Kap4-A], 
[Gard 1 ] ) .  In Chapter 1 7 , TOH will be related to chaos theory. In 
Chapter 20, the relationship of the winning sequences of the TOH and a 
frequency of sound known as } noise that occurs in music will be discussed. 

15.6 The TOH Sequence, Divisibility, and Self-replication 

Consider the never-ending and never-repeating sequence of moves: 

1 2 1 3 1 2 14 12 13 12 15 12 13 1 2 14 12 13 12 16  . . .  

that solves the TOH puzzle. Notice that this is the sequence of positions, 
listed in column 5 of Table 15 . 1  in which 0 changes to 1 or 1 changes to 
0 in the Gray code representation of successive integers. This sequence 
has a self-replication property [Adam1] .  For example, subtract 1 from 
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b) 
0, 3, 6, 9 . . .  

1, 4, 7  . . .  

Figure 15.7 Tower ofHanoi positions for rational approximations of � and r1z is represented 

by a mod 3 clock. 

each term in the series and remove the zeros, the TOH reappears. 
This property of self-similarity will be studied in Chapter 1 8  as the defining 
property of fractals. 

This self-similarity conveys information about the divisibility of numbers 
by 2 [Kap-A]. The sequence of integers are listed below along with the 
number of times, n, that 2 divides into each integer: 

Integer: 1 2 3 4 5 6 7 8 9 10  1 1  1 2  1 3  1 4  1 5  . .  . 
n: 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 . . .  . 

For example, 22 divides 12 while 23 divides 8. Notice that if the O's (2  does 
not divide odd numbers) are removed, then the TOH series remains. If the 
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numbers in column 5 of Table 1 5 . 1  are reduced by 1 ,  they represent the 
highest powers of 2 that divide into integer N. 

What happens now if the integers are divided by 3 ?  Again, recording 
the highest power of 3 that divides the integer results in the following 
sequence: 

Integer: 1 2 3 4 5 6 7 8 9 1 0  1 1  1 2  13  14  1 5  1 6  1 7  1 8  . .  . 
n: 0 0 1 0 0 1 0 0 2 0 0 1 0 0 1 0 0 2 . .  . 

Another series emerges after the O's are eliminated, namely, 

1 1 2 1 1 2 1 1 3 1 1 2 . . .  

What can this series signify? Adamson has shown that this is the TOH 
series for moving n disks from one peg to another for a TOH puzzle with 
four pegs A, B, C, D, in which the four pegs are arranged in a circle 
alphabetically in a clockwise direction as seen from above [Kap-A]. One is 
only permitted to transfer a disk from a peg to an adjacent peg in a given 
move with odd numbered disks moving CW and even numbered disks 
moving CCW. For example, if all the disks begin on peg A, disk 1 moves 
to peg B and then moves to peg C followed by disk 2 which moves to peg 
D, and then disk 1 moves to peg D solving the two disk problem, etc. 

As for the TOH series with three pegs, this generalized TOH sequence 
also has a self-replication property. Likewise, the TOH puzzle with 5 pegs 
leads to a series corresponding to division by the number 4 and so on. The 
implications of the self-replication property for the divisibility of integers 
has been explored in [Kap-A]. 

15.7 Conclusion 

Gray code was introduced and correlated with the integers. It was shown 
that Gray code expresses fundamental properties of the decomposition of 
integers into prime factors. Successive positions of the Towers of Hanoi 
puzzle are represented by Gray code and binary. Each TOH position 
corresponds to both a unique positive integer and to a rational number in 
lowest terms. TOH and its generalizations are directly connected to the 
divisibility properties of integers. 
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15.Al Converting between binary and Gray Code 

The trick to changing a number from Gray code to binary or binary to Gray 
code is to use a triangular path and the following rules of combination: 

1 1  or 00 � 0, 01  or 10 � 1 .  

a. The following example shows how binary can be converted to Gray code: 

Put a 0 in front of the binary number 1 1000 and use the two indicated 
legs of the triangle along with the rules of combination to generate the 
corresponding Gray code number 10100. 

Gray code 1 0 1 0 0 
I I I I I i 

Binary 0 -1-1-0 -0 -0 � 

b. The following example shows how Gray Code can be changed to binary: 

Put a 0 in front of the binary number and use the two indicated legs of 
the triangle below along with the rules of combination to convert the 
upper Gray code number to binary. 

Gray Code 1 0 1 0 0 
/ 1  / 1 / 1  / 1 / I  

Binary 0 1 1 0 0 0 71.!. 

15.A2 Converting {rom binary to TOH position 

Decimal 44 equals binary 1 0 1 1  00. Under each group of 
1 1 2 2 

bits write the decimal number for the quantity of bits in each group as 
shown. 

Taking the sequence of decimals, start from the right, and for each 
decimal number place that quantity of numbered disks, starting with disk 
1 ,  on a peg. Go to the next decimal number and do the same, continuing 
until all decimal numbers are exhausted. However in this process you must 
use the following three rules. 
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(a) Disks for a given move must go on a different peg than the last move. 
(b) Adjacent disk numbers must have opposite parity; no two odds or no 

two evens together. 
(c) If confronted with a choice of an unoccupied peg or an occupied peg, 

choose the latter. 

Let's demonstrate this for our example. 
The first decimal is 2, so place disks 1 and 2 on peg 1 ,  i.e., 1/2. The 

second decimal is also 2. By rule (a) the next two disks must be placed on 
a different peg, i.e., 3/4 1/2. The next decimal is a 1 .  By rule (c) disk 5 must 
be placed on an occupied peg if possible, so place it on peg 1 (peg 2 is 
eliminated by rule (a) ) ,  i.e., 3/4 1/2/5 . The last decimal is 1 .  Disk 6 cannot 
be placed on peg 2 because of parity rule (b) nor on peg 1 because of rule 
(a). So the final configuration is: 6 3/4 1/2/5 . 



16  
Gray Code, Sets and Logic 

16. 1 Introduction 

You can find truth with logic if you have already 
found truth without it. 

G .K. Chesterton 

The foundation of mathematics rests upon the theory of sets and logic. Set 
theory and logic have much in common; in particular they share a common 
algebraic structure known as Boolean algebra. I will describe the analogies 
between these twin subjects and show that they have strong connections to 
Gray code and to the structure of DNA. The "Law of Form" developed by 
G. Spencer-Brown to study self-referential systems will be shown to provide 
an alternative path to the study of Boolean logic. 

16.2 Set Theory 

All of mathematics can be related to the undefined concept of a set. A set 
is naively considered to be "a bunch of things" called elements along with 
a rule for determining whether some entity is or is not an element of the 
set. Before considering set membership, one generally limits oneself to a 
certain a set of possibilities referred to as the universal set with all defined 
sets being subsets of this universal set. For example, if the universal set 
consists of the integers from 1 to 10, i.e., U = {1 , 2, . . . , 9, 10}, then two 
subsets of this universe are A = {3, 4, 5} and B = {4, 5 ,  6, 7}. 

359 
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00 

Figure 16.1 Venn diagram for a pair of sets. 
The sets are labeled by bit pairs in a Gray code 
sequence from right to left. 

Sets can be combined in three elementary ways. The union of sets A 
and B, denoted by A u B, is the set containing all elements belonging to 
either A or B or to both, e.g., A u B = {3 , 4, 5 ,  6, 7}. The intersection, 
denoted by A n B, contains all elements that belong to both A and B, 
e.g., A n B = {4, 5}, and the complement of A, symbolized by A', is the set 
containing all elements of the universal set not in A, e.g. , A' = 
{ 1 ,  2, 6, 7, 8, 9, 10}. The notation A n  B' is also used to refer to a set whose 
elements lie within A but not within B, i.e. , A n B' = {3}. If two sets share 
no elements in common, they are said to be disjoint. 

A pair of sets A and B can be pictured in what is called a Venn diag.-am 
shown in Figure 1 6. 1 .  Here A and B partition the universal set U into four 
disjoint sets: A' n B', A' n B, A n B and A n B'. I will refer to these 
subsets as minterms for reasons that will become evident. These sets are also 
represented by number pairs (bit pairs) :  00, 0 1 ,  1 1 , 10. The first bit of these 
pairs refers to set A while the second bit refers to set B, with 1 representing 
the presence of an arbitrary element of the universal set being in set A or 
B while 0 corresponds to the absence of that element. Therefore, 

U = 00 u 01 u l l u 01 . ( 1 6. 1 a) 

With respect to the operations n and u sets satisfy all of the relationships 
of a Boolean algebra. The operation of intersection may be considered to 
be kind of multiplication so that A n B is denoted by AB, while the 
operation of union is defined to be a kind of addition so that A u B is 
denoted by A + B. As a result Equation ( 1 6. 1 a) can be rewritten as, 

U = 00 + 01 + 1 1 + 01 . ( 1 6. 1b) 
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A B 

()() 

(a) 

A B 

()() 

(b) 

Figure 16.2 Venn diagrams representing two setfunctions: (a) (A' n B) u A n  B'); (b) A u B. 

The Venn diagram defines 1 6  subsets related to A and B that I refer to 
as set functions. Two of these subsets are indicated in Figure 16. 2  by shading 
the appropriate regions. These shaded regions can also be represented by 
tables known as set builders notation. In this notation, whether an arbitrary 
element of the universal set is or is not in a given set is indicated in 
Tables 16.1 a and b by a 1 or 0. The four regions are presented in the first 
two columns; if the region is shaded its set function is represented in the 
third column by a 1 ,  otherwise by a 0. 

The function of A and B can be read directly from the table as the sum 
of the minterms corresponding to function values of 1 .  By referring to 
Figure 1 6.2b, the rather complicated function in Table 16.1b is none other 
than A u B or A + B. 
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Table 16.1a 

A B f(A, B) = A'B + AB' 

0 0 0 
0 1 

0 1 
0 

Table 16.1b 

A B f(A, B) = A'B + AB' + AB 

0 0 0 
0 1 
1 0 

Notice that the tables are organized so that the first two columns follow 
the order of the integers written in binary, while the sequence of numbers 
in the Venn diagram reading from right to left: 00, 0 1 ,  1 1 , 10 are Gray 
code. In other words, set builders notation is organized according to binary 
while Venn diagrams are related to Gray code. 

16.3 Mathematical Logic 

The subject of mathematical logic pertains to a class of statements known 
as statements or propositions p, q, r, s, . . . from a universe of discourse U. 
Propositions are defined to be statements that have intrinsic truth values. 
For example "Today it rained" is considered to be a valid proposition while 
"x + 5 = 3" is not since its truth or falsity depends on the value chosen for 
x. Paradoxically, mathematical logic is unable to determine whether a simple 
proposition is true or false; it can only determine the truth or falsity of 
compound propositions given the truth values of the simple statements that 
comprise it. 

Simple statements can be combined in three elementary ways. The 
statement "p and q", denoted by p A q, is considered to be true if both p and 
q are true, otherwise it is false; "p and/or q", denoted by p v q, is true when 
either p, q or both are true, otherwise false; and the negation of p or p' is 
true when p is false and vice versa. Again, logical propositions satisfy a 
Boolean algebra in which A is taken to be multiplication, i.e., p A q = pq, 
and v is addition, i.e. , p v q = p + q. 

Just as I did for sets, a Venn diagram can be used to represent the 1 6  
compound statements, or logic functions, related to p and q .  Statements p 
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and q are represented as intersecting circles. If p or q are true, we denote 
them by a 1 ,  otherwise we denote by a 0. In this way the minterms are p'q', 
p'q, pq', pq, i.e., 00, 0 1 ,  10, 1 1  and compound statements are represented by 
shaded sets. Just as I did for set builders notation, the truth values of 
compound propositions are represented by tables called truth tables. For 
example, if A and B in Figure 1 6.2 are now considered to be p and q, the 
shaded regions lead to Table 1 6.2 with p and q replacing A and B. 

If all of the regions of the Venn diagram are shaded, the truth function 
is true for all truth values of p and q. Such a compound statement is called 
a tautology T. Tautologies are analogous to the universal set in that, 

T = 00 + 01  + 10 + 1 1 . 

The concept of a tautology is fundamental to mathematics and science since 
theorems of mathematics and laws of science are considered to be tautologies. 

If none of the regions are shaded, the compound statement is considered 
to be a contradiction and denoted by F. The statement p v p' is a tautology 
since it is true regardless of whether p is true or false, while p A p' is a 
contradiction. It states that a proposition cannot be both true and false and 
is also referred to as the exclusion of the middle . It is a consequence of the 
two-valued system of logic that underlies mathematics. 

Once again truth tables are conveniently organized in binary while the 
Venn diagrams are related to Gray code. The truth values of compound 
statements can be organized by Gray code in another way by a table known 
as a Karnaugh map or K-map. Here the truth values of p and q are arranged 
along the left side and top of T able 1 6.2 leading to the integer sequence of 
Gray code shown by the arrows within the boxes. 

Table 16.2 K-,maps 
and Gray code. 

q' q 
0 1 

p' 0 00 � 01  
j. 

p 1  10 +--- 1 1  
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Table 16.3a Table 16.3b 

0 0 

0 0 0 0 
0 

If a region in the Venn diagram is shaded, label the appropriate box 
with a 1 otherwise 0. Kamaugh maps corresponding to the compound 
statements of Figure 1 6.2 are given by Tables 16.3. 

It is easy to simplify logical functions using K-maps. The minterms 
corresponding to a pair of adjacent 1 's either horizontally or vertically can 
be replaced by the variable in common to them and the function is reduced 
to the sum of these terms. As a result, the function defined by Table 1 6.3a 
cannot be reduced while the function in Table 16.3b can be reduced to 
p + q. Whenever the Venn diagram representation of the truth table has a 
pair of shaded regions that share an edge, then the K-map can be reduced. 

An alternative approach to mathematical logic based on Spencer-Brown's 
Laws of Form is presented in Section 1 6.8. 

1 6.4 Higher Order Venn diagrams 

In the above two sections I examined subsets and compound statements 
related to a pair of subsets. Everything continues to hold for Venn diagrams 
representing three sets shown in Figure 1 6.3. For example, 

u = 000 + 001 + 010 + 01 1 + 100 + 101 + 101 + 1 1 1 .  

The Gray code structure of the Venn diagram is seen by observing that only 
a single bit changes when crossing a boundary. However, I had never seen 
a Venn diagram for four sets until one of my students showed me that the 
Brunes star can serve as such a diagram. In Figure 16.4 the region within 
the upward, downward, leftward, and rightward pointed triangles represent 
sets A, B, C, D or propositions p, q, r, s. 
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Figure 16.3 A Venn diagram for three sets: 

000 A, B, C. 

Figure 16.4 A Venn diagram for four sets in the form of the Brunes star. 



366 Beyond Measure 

1 1 01 1 1 1 1  

Figure 16.5 Edwards' cog-wheel represents a Venn diagram for four statements. Regions of 
the cog-wheel are represented by Gray code. 

What about Venn diagrams for more than four sets? The following 
construction of the mathematical biologist Anthony Edwards [Stew2] called 
Edwards cog-wheels can represent any number of sets. Consider the example 
of four sets. Represent the universal set U by a rectangle, and place the 
following four curves numbered from 1 to 4 within the rectangle: 1 ,  a circle; 
2, a vertical line; 3, a horizontal line; 4, a curve with two concave regions 
called cogs. Set A corresponds to all points within the circle; set B to all 
points above line 2; set C to all points to the left of line 3; and set D to 
points within curve 4. Figure 1 6.5 shows that these curves divide U into 1 6  
regions. 

The regions are numbered, 0000, 0001 ,  etc. In this case the complement 
of these numbers (i.e., replace 0 by 1 and 1 by 0) represents the previous 
set builder's notation, e.g. , 0000 represents 1 1 1 1 , etc. In other words, an 
element of the universal set in subset 0000 lies in each of the four Edwards 
subsets. Notice that all numbers with a leading 0 are within the circle while 
all numbers with a leading 1 are outside. Also notice that starting with 
0000 and proceeding clockwise within the circle, the sequences of numbers 
are the Gray code equivalents of the decimal number 0-7, while this 
sequence continues to the decimal numbers 8- 1 5  running counterclockwise 
outside the circle. Also notice that when moving from one region to 
an adjacent region, a single digit of the Gray code changes from 1 to 0 
or 0 to 1 ,  where the number of the line specifies the number of the changing 
digit counting from the left, e.g., 001 1  changes to 0010  by crossing line 4. 
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Figure 16.6 Cog-wheel for six statements. 

For each additional set, a new curve must be added with twice the 
number of cogs as the previous line. Thus, a Venn diagram for five sets is 
constructed by adding a 5th curve with 4 cogs. Figure 1 6.6 illustrates the 
intriguing pattern that results from a 6th order Venn diagram. 

1 6.5 Karnaugh Maps 

K-maps for any number of simple proposltlons can also be formulated. 
For example a K-map for four simple propositions p, q, r, s is shown in 
Table 16 .4. Truth values for the pq and rs pairs are listed on the left 
side and top in Gray code order: 00,0 1 , 1 1 , 1 0. Corresponding sets of 
four bits are placed within each square of the table. Note that moving 
from left to right in row 1 and right to left in row 2 and then back and forth 
again in rows 3 and 4 results in the integer sequence 0- 15  in Gray code 
(see Table 1 6. 1 ) . 

Notice that the K-map inherits the reflection property of the Gray 
code. Except for the leading 1 or 0, the numbers in the upper half of the 
table are mirror reflections of the lower half. 

A truth function of p, q, r, s can be built by assigning 1 or 0 to each 
minterm if that minterm is true or false. In Table 1 6.4 this is done by using 
boldface for each minterm corresponding to a truth value of 1 for the 
logical function. For example, the truth function represented by Table 1 6.4 
has 14 minterms. 

K-maps have an advantage over truth tables. If two or more neighboring 
terms to the left or right, up or down, or wrap around (the first and last 
terms of a row are considered wrap around neighbors) have truth value 1 ,  
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Table 1 6.4 Karnaugh maps and 
Gray code. 

00 01 1 1  10 

00 0000 0001 001 1  0010 
01 0 100 0 101  01 1 1  0 1 1 0  
1 1  1 100 1 10 1  1 1 1 1  1 1 10 
10  1000 1001  101 1 1010 

the truth function can be contracted to the sum of products of the elements 
in common to these neighboring terms. In Table 1 6.4, the last two terms 
in the first row have p',q',r in common so that these two terms can be 
contracted to p' q'r. The contracted form has the same truth table as the 
original truth function and are therefore considered to be equivalent. The 
four terms that make up the square in the upper left comer has p',r' in 
common and can therefore be simplified to p'r'. The 8 terms in the bottom 
two rows have only p in common and so they contract to the simple 
statement p. In other words the 14 boldfaced minterms have the same truth 
table as: 

p'q'r + p'r' + p.  

Also notice that this expression can be further reduced to 

p + r' + q' 

by recognizing that the boldface elements in rows 3 and 4 with p in common, 
columns 1 and 2 with r' in common, and row 4 and wrap around row 1 with 
q' in common. 

1 6.6 Kamaugh Maps and n-dimensional Cubes 

A K-map can also be represented geometrically by an n-dimensional cube 
in which the vertices, corresponding to minterms of the truth function, 
are darkened. Referring to Figure 15 .6, 8 boldfaced minterms of Table 16.4 
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with p in common darken the vertices of the cube whose vertices all have 
1 as its first coordinate; call this cube p. It is one of the 8 cubes that make 
up the 4-dimensional hypercube in Figure 1 5.6. The four vertices with p'r' 
in common (the first and third coordinates are 0) lie on one face of this 
hypercube, while one of its edges corresponds to the two vertices with p' q' r 
in common. Each of the other seven 3-dimensional cubes that make up a 
4-dimensional cube represents one of the statements, p', q, q', r, r', s ,  s'. A 
tautology involving n simple statements would be represented by an n­
dimensional cube with every vertex colored, while a contradiction would be 
represented by an uncolored n-dimensional cube. 

Geometry and number are intimately connected in both the 
representation of the number system and mathematical logic. Haresh Lalvani 
[Lall , 2,3], a Professor of architecture, and Shea Zellweger [Zell ,2] , a 
psychologist, have independently discovered deep correspondences between 
sign-creation in logic and crystallographic symmetry. 

From this brief discussion of logic it would seem that the study of 
mathematics and science can be organized into the neat boxes of 
n-dimensional cubes. However, since Kurt Godel ( 1906- 1978) formulated 
his famous theorem in 193 1 ,  we now know that there is an irreparable flaw 
in this system. It is impossible to create a mathematical system, rich enough 
to include arithmetic, that is both consistent and contains every true statement 
or tautology, derivable from its postulates. Another way to state Godel's 
theorem is that some theorems require an infinite number of steps to prove, 
and their representation would require an infinite-dimensional cube to 
represent. We have also seen in Sections 13.4 and 14.4. 13 that logical 
paradoxes and irrational numbers can be reconciled within mathematical 
logic only by considering infinite processes. 

16.7 Karnaugh Maps and DNA 

The father of mathematical logic is thought to have been the mathematician, 
lawyer, and philosopher Gottfried Wilhelm Leibniz ( 1 646- 1 7 16) .  Liebniz 
is also credited with having introduced the system of binary numbers after 
learning about the Chinese book of Changes known as the 1-Ching. The 
!-Ching consists of 64 so-called hexagrams organized into two sequences of 
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triplets of two symbols, - - and - . If the first is associated with 0 and the 
second with 1 then the hexagram, 

0 1 1  = 0 1 0 . 
In recent years, a number of researchers including J .  F. Yan [Yan] , 

K. Walter [Wal] and Kappraff [Kap-A] have recognized that there is a close 
connection between the !-Ching and the structure of DNA. DNA is 
constructed of sequences of four bases: Cytosine (C), Guanine (G), Adenine 
(A), and Thymine/Uracil (U{f). Each of these bases can be assigned an 
ordered pair of bits as follows: 

C = O, 0 = 1, A = O, U/T = 1 ·  

0 1 1 0 
Triplets of these bases combine to form the equivalent of words or 

codons, e.g. , CGU = 01 1 
010 .  

Furthermore, in  the double helix that makes up the DNA strands, C bonds 
to G, and A bonds to U{f. Therefore each codon bonds to an anticodon, 
e.g., the anticodon of CGU is GCA = 100 made up of 

101 
complementary bits (1  replaces 0 and 0 replaces 1 ) . 

Both Yan and Walter organized all 64 possible codons into a chart in 
which the codons are denoted by pairs of integers from 0-7 written in 
binary. Here I depict the codons as pairs of Gray code numbers for reasons 
that will be explained. The 64 codons are mapped in Table 16.5 onto a 
K-map. 

Along with every codon, a number 6, 7, 8, or 9 is listed, indicating the 
number of Hydrogen bonds per codon. The number is determined quite 
simply by subtracting from 9 the number of 1 -bit differences between the 
upper and lower triplets, e.g. , the triplets for GCU differ in only the last 
digit so that the number of H-bonds is 9 - 1 = 8. Table 16.5 has several 
notable properties: 

1 .  There is a 1-bit (letter) change between any adjacent codons, up/down, 
right/left, including wrap arounds. 
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Table 16.5 Relationship between Gray code and the Number of DNA Hydrogen 
Bonds per Codon/Anticondon. 

0 2 3 4 5 6 7 
000 001 01 1 010 1 10 1 1 1  101  100 

0 000 000 000 000 000 000 000 000 
CCC 9 ccu s CUU 7 cue s UUC 7 UUU 6 UCU 7 UCC S 
000 001 0 1 1  010 1 10 1 1 1  101  100 
001 001 001 001 001 001 001 001 
CCA S CCG 9 CUG S CUA 7 UUA 6 UUG 7 UCG S UCA 7 
000 001 0 1 1  010 1 10 1 1 1  101  100 

2 01 1 01 1 01 1 0 1 1  0 1 1  01 1 01 1 01 1 
CAA 7 CAG S CGG 9 CGA S UGA 7 UGG S UAG 7 UAA 6 
000 001 0 1 1  010 1 10 1 1 1  10 1  100 

3 0 10  010 010 010 010 010 010 0 10  
CAC S CAU 7 CGU S CGC 9 UGC S UGU 7 UAU 6 UAC 7 
000 001 01 1 010 1 1 0  1 1 1  10 1  100 

4 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 
AAC 7 AAU 6 AGU 7 AGC S GGC 9 GGU S GAU 7 GAC S 
000 001 01 1 010 1 10 1 1 1  10 1  100 

5 1 1 1  1 1 1  1 1 1  1 1 1  1 1 1  I l l  1 1 1  1 1 1  
AAA 6 AAG 7 AGG S AGA 7 GGA S GGG 9 GAG S GAA 7 
000 001 01 1 010 1 10 1 1 1  101  100 

6 10 1  10 1  101  10 1  10 1  10 1  10 1  10 1  
ACA 7 ACG S AUG 7 AUA 6 GUA 7 GUG S GCG 9 GCA S 
000 001 01 1 010 1 10 1 1 1  10 1  100 

7 100 100 100 100 100 100 100 100 
ACC S ACU 7 AUU 6 AUC 7 GUC S GUU 7 GCU S GCC 9 

2. The diagonal from the upper left to the lower right with all 9' s is a 
mirror line; the triplets in reflected positions are inverted. 

3. Codon-Anticodon pairs are indicated by using the following rule. 

0 MATCHED TO: 5 
1 (ROW OR 4 
2 COLUMN) 7 
3 6 

For example CGU is found in Row 3 ,  Col. 2. Therefore its Anticodon, 
GCA must be located in Row 6, Col. 7 .  
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4. The numbers are written in snake-like fashion in Gray code (see 
Table 1 5. 1 ) . As soon as you reach 7 ,  drop immediately down to the next 
row, continuing with 8 . . .  then back and forth in the same manner for 
the other rows: 

0 1 2 3 4 5 6 7  
. . .  1 0  9 8. 

5 .  Table 1 6.5 is a magic square with the property that the sum of the 
hydrogen bonds in each row and column = 60, with a binomial 
distribution: 

( 1 )  6 
(3) 7 's  
(3)  8's 
( 1 )  9 

60 Total . 

The property of being a magic square is not restricted to the 8 X 8 
square. A 4 X 4 square can be formed in a similar manner from the 
integers 0, 1 ,  2, 3 .  In place of the number of Hydrogen bonds we can use 
the number of bit changes between the integer pairs. They also have a 
binomial distribution. 

6. The amino acids are formed from contiguous groups of codons, e.g. , 
proline: CCC, CCU, CCA, CCG; glutamine: CAA, CAG, leucine: 
CUU, CUC, CUG, CUA, UUA, UUG; etc. 

The advantage of using Gray code in genetics as opposed to binary is 
that Gray code eliminates the "cliffs" (mismatches between the number of 
bit changes and degree of mutation or differences between chromosome 
segments) .  The requirement in an encoding scheme is that changing any 
one bit in the segment of the chromosome should cause that segment to 
map to an element which is adjacent to the pre-mutated element. 

16.8 Laws of Form 

G. Spencer-Brown's "Law of Form" provides an alternative path to the 
study of Boolean logic [Spe-B]. In Boolean logic each proposition can take 
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p -·•--+---·- - p  

(b) 

Figure 16.7 (a) "Not" statement as an on-off switch; (b) symbol of process of inversion. 

p v q = 

(a) 

p > p v q =  pq 

q 
(b) 

Figure 16.8 (a) "Or" statement as an electric circuit; (b) junction diagram symbolizing the 
"Or" statement. 

on two values, true or false, 1 or 0. The device with a single switch shown 
in Figure 16.7(a) inverts a signal, i.e., it represents the "not" statement. If 
p is considered false when the switch is open, then it is true when the 
switch is closed. Let the diagram in Figure 1 6.7 (b) symbolize this process of 
inversion. We can also symbolize this process by - p or by Spencer-Brown's 
symbol PJ (see Section 13 .6) .  

The device shown in Figure 16.8(a) has the effect of modeling an "or" 
statement. If either or both switches are closed then the signal reaches the 
downstream junction and the statement p or q is considered to be true. 
Only when both switches are open does the signal not reach the downstream 
junction and the statement "p or q" is false. The "or" device is symbolized 
by the junction diagram in Figure 1 6.8(b) and by the juxtaposition pq. (So 
as not to confuse the reader, I emphasize that here by pq I do not mean 
Boolean multiplication as I did in Section 1 6.3. ) 
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p 1\ q = __,.__ p __,.__ + __,.__ q __...,_ = __.....,_ p __,.__ q __...,_ 
(a) 

p 

q 

(b) 

Figure 16.9 (a) "And" statement as a circuit diagram; (b) representation of "And" statement 
as a junction diagram. 

The device to create the compound statement "p and q" is shown 
in Figure 1 6.9(a). It is a pair of switches connected in series. When 
either or both of the p or q switches are open (false statement) then the 
signal does not reach the downstream terminal and the statement is false. 
The "and" statement can be expressed by algebraic relationship, p 1\ q = 
(p' v q')' known as De Morgan's Law (both sides of De Morgan's Law 
have the same truth table) .  Using combinations of the "or" and "not" 
diagrams we can represent p 1\ q as shown in Figure 1 6.9(b), or by the 
Spencer-Brown notation, Pl iJll . 

In his book, Laws of Form [Spe-B], Spencer-Brown has another notational 
idea. He represents the two-valued system of Boolean logic by a closed 
curve separating an inner region and an outer region (see Figure 1 6. 10(a)) .  
His symbol I was an instruction to cross the boundary so that: 

( In) l = Out and (Out) l = ln. 

Next Spencer-Brown denotes "Out" by a blank (see Figure 1 6. 10(b))  in 
which case, these equations are rewritten as, 

(blank) ! = In and =n = Out . 
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0 

(a) (b) 

Figure 16.10 (a) System of two-valued logic severs the continuum into an inner region 
representing "false" and an outer region "true"; (b) the inner region is blank while the outer 
region is marked. 

In other words, the symbol I has two uses 

1 )  instruction to cross the boundary, 
2 )  symbol to denote the Inside region. 

He also associates the blank with "false" or 0 and the form I with "true" 
or 1 .  With this notation the juxtaposition 'l1 =I symbolizes the fact that 
"a true statement or a true statement" is always true. We can summarize 
Spencer-Brown's two laws of form as: 

1 1 = 1 , 

==n = . 

( 1 6.2a) 

( 16.2b) 

Using these laws of form, the truth or falsity of any compound statement 
can be easily determined. For example, consider the logical statement. 

- ( (-p A q) v ( r A s ) )  or Pl1 �I � 5111 . ( 1 6.3 ) 

To create a truth table for this compound statement, we must assign 
truth values to p, q, r, and s. Let's say false values are assigned to all of the 
variables, i.e., p = q = r = s = 0 (or blank), then a truth table shows that 
the compound statement is true. The equivalent logic device is shown in 
Figure 1 6. 1 1 .  However, the expressions to the left of Figure 16. 1 1 gives an 
alternative procedure using the Laws of Form in Equations ( 1 6.2 )  to 
determine the truth value of Expression ( 1 6.3) .  The expression is shown to 
have value of the mark I or "true". 
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Figure 16. 1 1  Use of the "form" to simplify and represent a logical expression. 

The concept of duality arises in many branches of mathematics. We 
saw it at work in the theory of projective geometry discussed in Chapter 2 .  
In the theory of logic, if the operations of "and" and "or" are interchanged 
but "not" maintained then the truth value of any compound statement 
remains valid if false and true are also interchanged. This gives Spencer­
Brown's symbol system an advantage over the standard logic symbols. If 
juxtaposition is now interpreted as "and" and the value of the mark I is 
now interpreted as "false" while the "blank" is true, then each compound 
statement has dual interpretations depending on the preference of the 
observer. With the dual interpretation, Expression ( 1 6.3 ) ,  although still 
having the value I, is false for the "blank" values of p, q, r and s which 
are now interpreted as being true. 

This path to logic reduces the representation of Boolean algebra to a 
single symbol. It also opens logic to the consideration of a self-referential 
system discussed in Chapter 13. The universe is seen to be an undifferentiated 
continuum. Polarities, such as hot-cold, moist-dry, up-down, etc. come into 
being only when we the observer sever the continuum by making a mark. 
Our self-consciousness is then represented by the total space and the mark. 
The notion of true or false is not intrinsic to the universe, but is only 
relative to each individual's  personal system provided that it conforms to 
the established norms of mathematical logic. Everything within ones circle 
of discourse is considered to be "true" distinguishing from the "false" 
propositions lying outside the mark. 
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16.9 Conclusion 

The structure of natural processes, the logical processes of our minds, and 
even our genetic makeup operate according to principles based on number. 
Does this isomorphy exist in nature or do we impose it upon nature? These 
are questions for philosophers to ponder. In the next chapter I will investigate 
some of the deeper implications of number and, again, show that numerical 
relationships appear to have an a-priori validity even beyond our ability to 
carry out measurements. 



1 7  
Chaos Theory: A Challenge to Predictability 

As far as the propositions of mathematics refer to reality they are not certain; 
and as far as they are certain they do not refer to reality. 

Albert Einstein 

1 7 . 1  Introduction 

Ancient civilizations tried to make sense of their observations of the natural 
world even though they often experienced the world as chaotic. Their very 
existence depended on reliable predictions of such events as the arrival of 
spring to plant, fall to harvest, the coming and going of the tides, the 
movement of the heavenly bodies, etc. Individuals deemed to have unusual 
powers to comprehend these forces were singled out as shamans and chiefs. 
There is strong evidence that many pre-scientific peoples were keen observers 
to the extent that they were able to predict eclipses, and to understand the 
existence of the lunar cycle of 1 8  2/3 years, and the movements of the stars 
and planets - no small feats. These observations were fashioned into models 
of how the world was organized, and ultimate causes were attributed to the 
gods [Y ouD]. 

However, until the Greeks, there was no attempt to build a philosophical 
system based on these observations, to attribute causes beyond divine 
intervention, or to generalize the results to earthly phenomena. Greek 
philosophers were the first to create scientific theories of the universe. It 
was an article of faith among the Greeks that all heavenly bodies moved 
in circles, with the Earth at the center. Aristarchus was the first to 
hypothesize that the planets moved about the sun, although still in circles. 

378 
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While movement in circles, the most symmetric of mathematical objects, 
was philosophically appealing, the sun-centered system did nothing to 
improve upon the Earth-centered system in terms of its predictive 
power. 

As early man observed and as Gustav Holst immortalized in his suite 
"The Planets" in contrast to the orderly movement of the stars, the planets 
appear to wander erratically about the heavens. To bring order to the chaotic 
behavior of the planets, Greek mathematicians hypothesized that they moved 
on circles which themselves moved upon other circles, and so on. Although 
this led to a great deal of computational complexity, it did lead to the 
Earth-centered system of Ptolemy which rivaled the predictive power of all 
other systems until modern times. Ptolemy's system was greatly improved 
by the meticulous measurements of the Danish astronomer, Tycho Brahe. 
Brahe' s precise measurements of the motion of Mars, the most erratic of the 
planets, led Kepler to formulate his three laws, which constituted the first 
modern theory capable of bringing order to the movement of the planets 
(see Chapter 5 ). The first of his laws broke with the 2000-year-old faith in 
circles by hypothesizing that ellipses, with the sun at a focus, were the true 
paths of the planets. However, Kepler's laws were strictly empirical, not 
based on theory. Finally, Newton was able to hypothesize a single force, 
gravity, as the cause of the motion, and with the help of the calculus, which 
he invented for this purpose, was able to prove Kepler 's laws. 

Once the starting position and velocity of a particle (whether planet or 
stone) are known, its motion through all of time is preordained by Newton 's 
Laws. In this sense, Newtonian physics is said to be deterministic. Although 
gravity is considered to be the cause of the mot{on, what gravity is and how 
it acts upon another body over great distances\. with no time lag, was not 

\ 
explained by Newton. As a result, scientific theory made its first major split 
from the traditions of ancient civilizations in which the cause of things was 
attributed to some ultimate force. When Lagrange was asked by the King 
of France what place God had in Newton' s system, he replied, "Sire, I have 
no need for that particular assumption". Ultimate causes were left to religion, 
and science contented itself with matters of prediction. Newtonian physics 
was seen to be precise in its range of applications, but devoid of internal 
justification - a purely mathematical model. It formed the prototype for all 
theories to follow. 
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In most people's minds the success of Newton's system put an end to 
the quest for answers to the questions as to the origin of order in the 
universe. All scientific questions could certainly be accounted for by careful 
application of the principles stated by Newton's laws along with the 
sophisticated mathematical apparatus developed to plumb the depths of 
these laws. Alexander Pope expressed the prevailing opinion when he wrote: 

"Nature and nature's laws lay hid by night. God said: Let 
Newton be. And all was light." 

After Newton, all scientific development was thought to be merely a matter 
of detail, and completely deterministic. As Laplace said, 

"If the initial positions and velocities of all the particles in the 
universe were known, everything would be known thereafter." 

Philosophers such as Kant, Locke and Hume, and economists such as Adam 
Smith, drew on the Newtonian concept of the universe with its strict 
determinism to build epistemological and economic systems. Gone were 
the days when everyone had their own model to explain their observations. 

We now know that it was naive to imagine that Newton had all the 
answers. Even in his own time, it was well known that if a large planet such 
as Jupiter were taken into account, the orbits of the other planets would not 
be ellipses and the motion might not even be recurring or periodic. In fact, 
it is precisely because of the hypothesized effect on the orbit of Jupiter by 
an unseen mass that Neptune's existence was first determined by Le Verrier 
in 1 846. Now that our instruments enable us to observe phenomena in 
greater detail, we see that Newton's laws are inadequate to explain them. 
The theory of relativity has eliminated the preferred position of any object 
- be it Earth, Sun, or other heavenly body - while quantum theory has 
done away with the notion of cause and effect. Jacques Merlo Ponti [Mer] 
believes that the very success of Newtonian physics resulted in an atrophy 
in the model -making capacities of modern scientists. For example, 
new models are needed to comprehend the flood of observations about the 
outer worlds of astronomy and cosmology, and the inner world of the mind. 
The artist Todd Siler [Sil] feels that the sensitivity of the artist can play a 
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role in helping the scientist to imagine new possibilities and create new 
models. 

In the last two decades, the theory of chaos developed by Anosov, 
Ruelle, Smale, Sinai and other mathematicians has even cast doubts on our 
ability to develop any theory capable of predicting precise measurements 
over unlimited ranges of time {cf. [Dev], [Ole], [PJS) and [Stewl ] ) .  Up until 
now we have been l iving with the illusion of scientific predictability. Only 
if we ignore significant factors are we able to come up with the orderly 
results. 

Even in a deterministic system, the smallest of causes can have significant 
effects if enough time elapses. In fact is was E.N. Lorenz, a meteorologist, 
who first noticed this numerical instability in his attempt to study some 
simplified equations that modeled the dynamics of weather systems. After 
carrying out a lengthy computer calculation, he wished to rerun the last 
phase of the calculation. Although he thought that he was beginning his 
rerun with almost the same values that had concluded his previous run, 
much to his astonishment, the rerun resulted in grossly different results. 
We now know that such problems are endemic to realistic weather systems. 
This phenomenon goes by the picturesque name butterfly effect, since 
the equations are so sensitive that, given enough time, the flutter of a 
butterfly's wings in Venezuela can have a measurable effect on the weather 
in New York. 

Only systems insulated from extraneous factors are capable of analysis 
in the old sense. Realistic systems must take into account the effects of a 
myriad of seemingly unrelated factors. It is possible that the very bedrock 
of modem science - the theories that have helped give order to the ocean 
of observations of the world - correspond to a narrow range of outcomes 
in a sea of disorder. If we imagine the well-behaved theories to correspond 
to the rational numbers, all possible observations would correspond to 
the irrationals. 

Let us consider a mathematical system that exhibits chaos, in order to 
understand the source of its unpredictability. Number lies at the heart of 
the problem and offers us a chance to give some order to the impending 
chaos. We shall also see that Gray code and the Towers of Hanoi present 
us with models to reproduce some of the dynamics of chaotic systems. 
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1 7.2 The Logistic Equation 

Much of the early work of scientists and mathematicians concentrated on 
linear systems since they were easier to analyze than nonlinear systems. A 
linear function is represented by a line as shown in Figure 1 7 . 1  a, while the 
simplest nonlinear function is depicted by the parabola shown in Figure 1 7. 1  b. 
Once scientists began to focus in detail on the results of nonlinear analysis, 
even nonlinear functions as elementary as the parabola exhibited startling 
results. So long as some perturbing force is kept below a critical level, the 
subsequent motion, or trajectory, of the system is entirely predictable. A 
small deviation from its starting position results in only a minor alteration 
of its motion. However, once the perturbing force exceeds a critical value, 
all predictability is lost. The slightest deviation from the starting position 
eventually leads to a grossly different trajectory. And, since from a practical 
point of view, the initial position is knowable only to the accuracy of one's 
measuring device, reproducibility of results, the most essential ingredient of 
scientific pursuits, is unattainable. 

Let us consider the results of a simple numerical experiment carried out 
by H.-0. Peitgen, H. Jurgens and D. Saupe (PJS], with the parabola shown 
in Figure 1 7 . 1b  given by the equation: 

2 Xn+l = Xn + c . ( 1 7. 1 )  

In this equation Xn plays the role of the position of a particle at time n, 
while c corresponds to the strength of the perturbation. Equation ( 1 7 . 1 )  
enables knowledge of the system at time n to be used to determine the state 
one time period later. In Appendix 1 7.A this equation is shown to be a 
disguised form of the equation for population growth in which there exists 

a b 

/ V  Figure 17.1  (a) a linear system is represented 
by a straight line; (b) the simplest nonlinear 
system is represented by a parabola. 
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competition for scarce resources to limit the otherwise exponential growth 
of a population [PJS]. With this interpretation, c corresponds to some 
combination of the birth rate and level of competition, and Equation ( 1 7 . 1 ) 
is referred to as the logistic equation. 

The experiment begins by choosing a value of c = -2 and an initial 
value of xo = 1 .97 .  Replacing this value in the right -hand side of 
Equation ( 1 7 . 1 )  and using a Casio calculator, yields x1 = 1 .972 -2 = 
1 .8809. Again replacing x1 = 1 .8809 in the right -hand s ide of 
Equation ( 1 7. 1 )  yields, Xz = 1 .53778481 .  Continuing in this way, x45 = 
-1 .99232623. Now let's check the sensitivity of Equation ( 1 7 . 1 )  to the 
initial conditions by using the initial value, x0 = 1 .97, but this time make 
the calculation with a Texas Instruments calculator. Table 1 7 . 1  compares 
the results. 

Notice that up to xs there is agreement in 9 decimal places. For x10 
there is agreement to the 8th decimal place after which the first deviation 
in the results occurs in the 9th place. After that point, the discrepancy 
between the calculators grows until by x40 there is only agreement in the 
1 st place and by x45 the values bear no relationship to each other. Table 
1 7. 1  shows how results diverge from each other even though the initial 
values agree to 10  significant figures. The discrepancy occurs because Texas 
Instruments calculators cut off the calculation after 1 2  significant figures 
while Casio uses only 10 figures. The result is so sensitive to computational 
error that even this minute difference results in major deviations in the 
trajectory. 

If xo = 1 in Equation ( 1 7 . 1 ) ,  the trajectory is 1 ,  -1 , -1 , -1 ,  . . .  If xo = 2, 
the trajectory is 2 ,  2 ,  2 ,  . . . .  Both of these initial values lead to constant 
states. However, we find that for any other value of xo in the interval 
[-2, 2], the trajectory is as erratic as the one in Table 1 7. 1 .  For example if 
we begin with xo = 1 .9999 . . .  , a tiny deviation from xo = 2, then the equation 
exhibits the non-computable behavior once again provided we allow a 
sufficient number of iterates. 

The situation is quite different if we change the value of c to c = -1 and 
begin with x0 = 0.5. Now the trajectory is shown in Table 1 7.2. 

Notice that to the accuracy of the calculator, the trajectory approaches 
the periodic orbit, 0, -1 , 0, -1 , 0, . . . .  The trajectory settles down to this 
same periodic orbit for any other starting point inside the interval [-2, 2]. 
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Table 1 7.1 Two different calculators making 
the same computation do not produce the 
same results. 

n Xnz - 2 Xn2 - 2 

Casio Tl 

0 1 .97 1 .97 

1 .8809 1 .8809 

2 1 .53778481 1 .53778481 

3 0.364 7821 22 0.3647821 22 

4 - 1 .866934004 - 1 .866934004 

5 1 .485442574 1 .4854425 74 

10  - 0. 1 68742904 - 0. 1 68742902 

1 5  - 1 .810785329 - 1 .8 10785307 

20 0.2 104 1 2598 0.2 10410962 

25 - 1 .946761088 - 1 .946773 1 55 

30 0.877064961 0.87857887 1 

35  - 0.759852736 - 0.809443757 

40 1 .  990898806 1 .439688097 

45 - 1 .992332623 1 .671012669 

So for c = -1,  we have perfect order and reproducibility so dear to the 
scientist. 

In order to get a better feeling for what is happening, picture the 
trajectory on a graph. This time we shall use a form of the logistic equation 
equivalent to Equation ( 1 7. 1 )  (see Appendix 1 7.A) but more suitable for 
the graphical demonstration, 

( 1 7.2)  

A 45 -degree line intersects the inverted parabola whose graph is that of the 
function, y = ax( l - x). When x = x0 is placed into the right-hand side of 
this equation, the resulting value XJ is replaced in the equation by moving 
horizontally from the curve to the line, as shown in Figure 1 7.2. 
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Table 17.2 (cf. [PJS]) 

Evaluations X i - 1  

-0.5 -0.75 

2 -0.75 -0.4375 

3 -0.4375 -0.808593 75 

4 -0.80858375 -0.3461 761475 

5 -0.346 1 761475 -0.88016207 49 

6 -0.8801620749 -0.2253 1472 19  

7 -0.2253 1 4  72 19  -0.9492332761 

8 -0.9492332761 -0.0989561875 

9 -0.0989561875 -0.9902076730 
10  -0.9902076730 -0.0194887644 

1 1  -0.0194887644 -0.9996201881  

12  -0.9996201881  -0.0007594796 

13  -0.0007 594 796 -0.9999994232 

1 4  -0.9999994232 -0.000001 1 536 

1 5  -0.000001 1 536 -1 .0000000000 

1 6  -1 .0000000000 -0.0000000000 

1 7  -0.0000000000 -1 .0000000000 

bisector 

0 ���----�--------� 0 x0 x1 
t 

start 
Figure 1 7.2 Principle of graphical iteration. The first 
steps in the graphical iteration of Xn+l = axn( 1-xn). 
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Figure 17.3 (a) , (b), and (c) Graphical iteration for three parameter values leading to stable 
behavior (c ) exhibits period 2 behavior; (d) unstable behavior for a =  4. The same initial value 
is taken with differing numbers of iterations. 

First of all, notice that if x0 = 0 is placed in Equation ( 1 7  .2) ,  then 
x1 = 0 and, likewise, the trajectory is 0, 0, 0 . . . . Therefore x0 is called a fixed 
point of the transformation. Although this fixed point gives rise to 
very orderly behavior, it is also unstable. It is unstable because if we 
move Xo away from 0, even slightly, the subsequent points of the trajectory 
move further away from 0. Figure 1 7.3 shows the trajectories for several 
values of the parameter, a. When a = 1 .45 ,  the values increase steadily 
to the point of intersection of the parabola and the line, as shown in 
Figure 1 7 .3a. If "a" is increased to a =  2.75, the trajectory increases again 
to the intersection point, but this time it spirals into it (see Figure 1 7.3b) . 
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Increase the parameter to a = 3 and this time, regardless of the starting 
point, the trajectory approaches an orbit that oscillates between the two 
values, xo � XI � xo. We refer to this trajectory as an orbit with period 2 .  
Since the same orbit occurs for any starting point other than 0 or 1 ,  we say 
that the periodic orbit is stable. For example when a = 3.23606 . . .  there is 
a stable periodic orbit of period 2 ,  x0 = 0.5 and xi = 0.80901 . . .  as shown 
in Figure 1 7.3c. If "a" is increased to a =  3.4985556 . . .  , we discover that 
the trajectory approaches an orbit that oscillates between four values, 
Xo � Xt � Xz � XJ � xo, i.e., it has a stable periodic orbit of period 4 
where, 

Xo = 0.500, XI = 0.874 . . .  , Xz = 0.383 . . .  , and XJ = 0.827 . . . .  ( 1 7.3) 

If we increase "a" further, we find the remarkable result that the trajectories 
successively approach orbits of periods 2,4,8 , 16, . . .  , a period doubling sequence 
of orbits. Finally, if "a" is increased beyond the value a = 3.5699 . . .  , the 
Feigenbaum limit, we reach the realm of chaos in which the resulting 
trajectories are supersensitive to the starting positions as we saw above for 
the logistic equation (see Figure 1 7.3d). Full-blown chaos corresponds to a 
= 4. The region beyond the Feigenbaum limit will be discussed further in 
Chapters 19 and 23. 

The sequence 1 ,  2 ,  4, 8, . . .  was previously encountered in our study of 
Farey series, Towers of Hanoi, and n-dimensional cubes. Can there be a 
connection here between these mathematical structures? The answer to 
this question is surprisingly, yes! 

1 7.3 Gray Code and the Dynamics of the Logistic Equation 

Associate each 2n block of the Gray code in Table 1 5 . 1  with successive 
positions of an orbit of the logistic equation with period 2n. The dynamics 
of the orbit of period 8 is determined by the integer block: 8- 15 .  
The iteration numbers of the orbit positions are listed in column 4 of 
Table 1 7 .3 corresponding to the order of the magnitudes of the x-values 
listed in column 2. Order 1 corresponds to the largest x-value while order 
8 to the smallest. 
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Table 1 7.3 Trajectory ordering and Gray code for the logistic equation. 

Decimal Order of magnitude Gray code Logistic equation 
of iterate iterate number 

8 8 1 100 2 

9 7 1 101 6 

1 0  6 1 1 1 1  8 

1 1  5 1 1 10 4 

1 2  4 1 01 0  3 

13  3 1 01 1  7 

1 4  2 1 001 5 

1 5  1 000 

The values in Table 1 7.3 can be calculated from the Gray Code as 
follows [Adami ]: 

(a) Separate out the first 1 .  
(b) From left to right, assign each of the remaining digits in succession the 

value 1 ,  2 ,  4, 8, . . . .  
( c )  Add the values corresponding to the l 's in Gray code. 
(d) Add 1 .  

For example, consider Gray code 1 10 1 .  Extracting the leading 1 yields, 

1 2 4 
1 0 l = 5 + 1 = 6. 

Therefore, the 6th iterate ( 6 in column 4) of the logistic equation corresponds 
to Gray code 1 101  and represents the 7th largest value of x { 7  in column 
2)  in the orbit of period 8. According to Table 7.3, the x-values satisfy the 
following order: 

Using Table 15 . 1 ,  this procedure can be used to show that the order of 
the values corresponds to the one listed in Sequence ( 1 7 .3 )  for a period of 
length 4. 
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1 7.4 Symbolic Dynamics 

How do Gray code and Towers of Hanoi positions relate to chaos ? If a 
trajectory point of the logistic Equation ( 1 7  .2) lies to the left of the maximum 
at x = 0.5, label it L, if it lies to the right of x = 0.5, label it R, and C if 
it lies at x = 0.5 . Using Table 1 5. 1 ,  we can read off the sequence of points 
as to whether they are L,R, or C, directly from either binary or Gray code. 
Such a sequence is also known as the symbolic dynamics. Each of the period 
doubling orbits is determined from either binary or Gray code as follows, 
where L = 0 and R, C = 1 :  

(a) Choose a block of length 2n from Table 15 . 1 and consider the numbers 
in reverse ·order. 

(b) Note the first column {counting from the right) in the binary 
representation at which 1 changes to 0. If odd, assign 1 ;  if even, assign 
0. Alternatively, note the column (counting from the right) in Gray 
code at which 0 changes to 1 or 1 changes to 0. If odd, assign 1 ;  if even, 
assign 0. 

For example, consider the block of numbers 4-7 in Table 15 . 1  in reverse 
order, i.e., 7, 6, 5 ,  4. The symbolic dynamics is 101 1 .  This compares to the 
symbolic dynamics, RLRC, of the sequence Xt � Xz � x3 � x0 from 
Sequence ( 1 7 .3 ) .  

The symbolic dynamics for each of the blocks of length 1 ,  2, 4 ,  8 ,  1 6  in 
Table 15 . 1 ,  taken in reverse order, yields the following sequences: 

1 
10 
101 1 
101 1 1010 
101 1 1010101 1 101 1 

Notice how the symbolic dynamics of each period is included in the dynamics 
of the previous periods. 

The above sequence can also be obtained directly from the parity of the 
TOH sequence: 1 21 3 1 2 14 1 2 13 1 2 1 . . . , i.e., set the odd numbers in this 
sequence equal to 1 and even numbers equal to 0. 
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1 7.5 The Morse-Thue Sequence 

It is amazing that the complex dynamics of a mathematical system should 
be hidden within the sequence of counting numbers. The symbolic dynamics 
can also be found from the sequence of counting numbers written in 
the base 2 or binary notation. This approach yields a sequence called the 
Morse-Thue Sequence or MT with its own properties [Schr] . MT sequences 
arose originally in the symbolic dynamics for certain nonlinear dynamical 
systems arising in physics. First write the positive integers in binary: 

0, 1 ,  1 0, 1 1 , 100, 10 1 ,  1 10, 1 1 1 ,  . . . .  

Next, add the digits. I f  even, assign 0 ;  if odd, assign 1 i.e., find the sum of 
the digits mod 2 also known as the digital roots, to get the sequence, 

0 1 1 0 1 0 0 1 . .  . .  

The MT sequence can also be  generated by starting with 0 and iterating the 
mapping 0 � 01 and 1 � 10 to get, 

0 
01 
0 1 10  
01 101001 

Notice how the length of the sequence increases in the sequence 1, 2,  4, 8, . . .  
and how each number of this sequence contains the previous sequence 
of numbers followed by their complements, i.e. ,  0 changes to 1 and 1 
changes to 0. However, the entire sequence is, like the irrational numbers, 
non-repeating or a-periodic. 

The symbolic dynamics of the logistic equation follows from the MT 
sequence taking the sum mod2 ( i.e. , even sum is 0, while odd sum is 1 )  of 
every pair of numbers from the sequence starting from the left, 

101 1 10 1 . .  . .  

Alternatively, we could consider the Morse-Thue sequence to be a number 
in binary and obtain the symbolic dynamics by converting binary to Gray 
code as in Appendix 15 .A. 
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Before we leave this subject, Consider another hidden pattern within 
the MT sequence. Although MT never repeats, it contains within itself a 
subtle repetitiveness. Underline every other digit, and notice how the entire 
pattern replicates, 

Q l l O l O Q l l O Q l Q l l O . . . . 

Form pairs of these digits and rename the pair by its leftmost digit and 
notice the replication of the original pattern, 

01 10 10 01 . . .  � 0 1 1 0 . . . . 

Analogous results occur when any sequence of digits of length 2n is 
underlined. 

1 7.6 The Shift Operator 

In Chapter 14 ,  we saw that rational numbers were identified with finite 
processes while irrational numbers were related to infinite processes. 
An examination of the logistic equation for the value, a = 4, i.e., in the 
chaotic regime, illustrates the relationship between number and chaos. 
Equation ( 1 7.3) can be transformed [Schr] to the following simple form, 

( 1 7.4) 

where L J f means that the fractional part of the number is taken and the 
integer part is discarded, e.g., L2.36Jf = 0.36. Therefore, if the irrational 
value, Yo = 0. 1010010001 . . .  , written in binary, is multiplied by 2 ,  the 
decimal point moves one place to the right (just as a decimal number 
multiplied by 10  moves the decimal point one place to the right) to yield, 
1 .010010001 . .  . .  As a result, from Equation ( 1 7.4 ) , Yt = 0.010010001 . . . . 
For this reason, Equation ( 1 7.4) is called a shift map. Likewise, Yz = 
0.10010001 . .  . , Y3 = 0.0010001 . .  . ,  etc. 

Although this trajectory never repeats itself, it is "near" periodic orbits 
of �1 periods. For example, the orbit with initial value Yo = 0. 101010 . . . = 
0.10 leads to a trajectory with periods 2, and 4. Yet it agrees with the first 
two positions of the irrational trajectory to 2 decimal place. Also the periodic 
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trajectory with initial value, Yo = 0.1010010010100100 . . .  = 0.10100100 
leads to a trajectory of period 8. Yet it agrees with the first four positions 
of the irrational trajectory to 4 decimal places. In this way, periodic orbits 
of all periods can be constructed "near" any irrational trajectory. Once again, 
the intimate connection between rational and irrational numbers and the 
dynamics of a mathematical system in the chaotic regime can be seen. 

1 7.7 Conclusion 

The logistic equation exhibits extraordinary subtlety despite its disarming 
algebraic simplicity. However, its simplicity is merely an illusion in view of 
the complex dynamics exhibited by this equation. This is all the more 
compelling when we consider the universality of the logistic equation. The 
same underlying structure is inherent in more complex and realistic nonlinear 
mathematical models. In fact, it can be shown that a wide class of nonlinear 
transformations exhibit behavior that can be characterized by certain 
constants known as Feigenbaum numbers, after their discoverer, even though 
the equations are quite different in their appearance. 

Number lies at the heart of transformations exhibiting chaotic behavior. 
Chapters 19 and 23 will be devoted to studying the dynamics of the logistic 
equation in greater detail. We will show that chaos at one level leads to 
exquisite order at a higher level of analysis. The next chapter is devoted to 
a study of fractals, a subject closely related to chaos theory. 

Appendix 1 7 .A 

The problem is to show that, 

and, 

are equivalent. 

2 Zn+ l = Zn + C 

( 1 7.Al ) 

( 1 7.A2) 
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The standard form of the logistic equation is, 

( 1 7.A3 ) 

This equation says that the change in population during one time period 
is both proportional to the level of the population Pn and is limited by a 
term Pn 2 which reflects the competition for scarce resources. 

We shall first show that Equation ( 1 7  .A2) is equivalent to Equation 
{ 1 7.A3) and then that Equation ( 1 7 .A3) is equivalent to Equation ( 1 7.A1 ). 

Let 
1 - r2 

c = -- and 
4 

1 + r  
Zn = -- - rpn 

2 
( 1 7.A4) 

and replace these in Equation ( 1 7 .A2) .  After some algebra the equation 
reduces to Equation ( 1 7.A3 ) . 

Next, let 

Pn = (r�l )xn and r = a  - 1  ( 1 7 .A5) 

and replace this in Equation ( 1 7  .A3 ). After some algebra this reduces to 
Equation ( 1 7.Al ). 

From Equations ( 1 7 .A4) and ( 1 7 .A5) we find that, 

a = 1 + .J1 - 4c and 
1 Zn 

Xn = - - - .  
2 a 

( 1 7.A6) 

From Equation ( 1 7.A6) notice that c = - 2 corresponds to a = 4. 
This is consistent with the chaotic behavior demonstrated by the results of 
Table 1 7 . 1  and Figure 1 7 .3 . 



18  
Fractals 

Symmetry, as wide or as narrow as you may define its meaning, 
is one idea by which man through the ages has tried to 

comprehend and create order, beauty, and perfection. 

Hermann Weyl 

1 8. 1  Introduction 

Euclidean geometry (the geometry most of us learned in high school) has had 
a major impact on the cultural history of the world. Not only mathematics, 
but art, architecture, and the natural sciences, have utilized the elements 
of Euclidean geometry or its generalizations to projective and non-Euclidean 
geometries. However, by its nature, Euclidean geometry is more suitable to 
describe the ordered aspects of phenomena and the artifacts of civilization 
rather than as a tool to describe the chaotic forms that occur in nature. For 
example, the concepts of point, line, and plane, which serve as the primary 
elements of Euclidean geometry, are acceptable as models of the featureless 
particles of physics, the horizon line of a painting, or the facade of a building. 
On the other hand, the usual geometries are inadequate to express the 
geometry of a cloud formation, the turbulence of a flowing stream, the pattern 
of lightning, the branching of trees and alveoli of the lungs, or the 
configuration of coastlines. 

In the early 1950s, the mathematician Benoit Mandelbrot [Man] , aware 
of work done a half century before, rediscovered geometrical structures 
suitable for describing these irregular sets of points, curves and surfaces from 
the natural world. He coined the word fractals for these entities and invented 
a new branch of mathematics to deal with them, an amalgam of geometry, 
probability, and statistics. Although there is a strong theoretical foundation 

394 
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to this subject, it can be studied best through the medium of the computer. 
In fact, while fractal geometry is a subject in which mathematical objects 
are generally too complex to be described analytically, it is an area in which 
computer experiments can lead to theoretical results. 

Mandelbrot created his geometry in 197 4 after observing the patterns 
arising in such diverse areas of research as the structure of noise in telephone 
communications, the fluctuation of prices in the options market, and 
a statistical study of the structure of language. One of Mandelbrot's 
colleagues at Bell Labs, Richard Voss, has also pioneered the relationship 
between fractals and music [Vos-C]. In 1961 Mandelbrot turned his attention 
to an empirical study of the geometry of coastlines carried out by the British 
meteorologist Lewis Richardson. Mandelbrot recognized the theoretical 
structure behind Richardson's data and saw how this structure could be 
generalized and abstracted. This chapter is devoted to a discussion of how 
Richardson's work on the geometry of coastlines led Mandelbrot to formulate 
his fractal geometry, and is also meant to serve as an introduction to 
Mandelbrot's work. Since Mandelbrot's early work, fractals have become 
the visual language of chaos theory, this chapter and the next will describe 
the connections between these two subjects. The key to understanding 
fractals and their applications to the natural world lies in their embodiment 
of self-similarity, self-referentiality, and universality. 

18.2 Historical Perspective 

Before beginning a discussion of Richardson's approach to analyzing 
coastlines, it is useful to place the subject of fractals in historical perspective. 

Calculus was invented in the latter part of the 1 7th century by Newton 
and Leibnitz in order to deal mathematically with the variation and changes 
observed in dynamic systems such as the motion of the planets and of 
mechanical devices. Through calculus, the concepts of continuity and 
smoothness of curves and surfaces were quantified. However, since the 
approach to this subject was intuitive, continuity and smoothness were 
limited in their range of possibilities to ordered or tame motions. When 
the logical foundation of calculus was completed by the middle of the 19th 
century, mathematicians were motivated to search for extreme examples of 
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variability with which to test the now rigorous definitions of continuity and 
smoothness. Much to the surprise of the mathematical community, Karl 
Weierstrass ( 1 815- 1 897 ) ,  Georg Cantor ( 1 845- 1918 )  and Giuseppe Peano 
( 1 858-1 932)  were able to create pathological curves and sets of points that 
confounded intuition. Weierstrass constructed a curve spanning a finite 
distance that was infinite in length, continuous but nowhere smooth. Peano 
created a curve that could fill up a square without crossovers (although 
segments of the curve touched). Cantor constructed a set of points as 
numerous as all the points within a unit interval yet so sparse as to take up 
negligible space - or in mathematical terms, of measure zero, justifying its 
characterization by Mandelbrot as a dust. 

Most mathematicians considered these pathological creations to be 
interesting curiosities but of little importance. After all, their lack of 
smoothness rendered them not amenable to analysis with calculus. However, 
Mandelbrot, following on the footsteps of his teacher Paul Levy, the father 
of modem probability theory, saw these irregular curves and sets as models 
for the shapes and forms of the natural world, and he formulated his fractal 
geometry in order to tame these monstrous curves. We have already 
encountered one such curve as the flowsnake curve in Figure 1 2 . 10. Others 
will be described in Section 1 8.4. 

In recent times many mathematicians and computer scientists, both 
professional and amateur, have done excellent work bringing fractal images 
and chaotic phenomena to light and exploring their theoretical implications. 
There are a few books enlightened this field such as [Bam], [Fed] , [Fal] , [Gle], 
[Pei-R] , [Pru-L] , [Schr] . In this chapter we will call principally upon the work 
of Heinz-Otto Peitgen, Jurgens Hartmut, and Dietmar Saupe from their book 
Chaos and Fractals [PJS] and Peitgen and Peter H. Richter from The Beauty 
of Fractals [Pei-R]. 

18.3 A Geometrical Model of a Coastline 

Most people's concept of a coastline derives from two sources: observations of 
coastlines on a map and a vacation visit to the seashore. However, both of 
these experiences yield different impressions. A coastline shown in an atlas 
gives the impression of the coast as a comparatively smooth and ordered curve 
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of finite length, easily determined from the scale of the map. However, a 
visit to the coast generally reveals rugged and chaotic terrain with rocks 
jutting out to the sea and an undulating shoreline dynamically varying over 
time and space. 

Look again at maps illustrating a coastline at an increasing sequence of 
scales. At a scale of 1 in. to 100,000 ft., the scale of a good roadmap, the coast 
appears quite smooth and indicates a bay by means of a small indentation. At 
a scale of 1 in. to 10,000 ft., a small inlet not indicated on the previous map 
is seen in the bay. At 1 in. to 1000 ft. ,  a small cove is demarcated within 
the inlet. Finally, at 1 in. to 100 ft. ,  the scale of a highly detailed map, the 
cove is seen to have almost as much detail as the original map of the entire 
coastline. In fact, Richardson discovered that the coastline has effectively 
unbounded length and is nowhere smooth; this ever increasing detail is 
taken into account at decreasing scales. Scales below 1 in. to 50 ft. are not 
considered since they bring into focus irrelevant details, whereas scales above 
an upper cutoff are also not considered, since crucial details of the coastline 
would be deleted. 

I begin a study of the geometry of coastlines by finding the length of a 
smooth curve such as the one shown in Figure 1 8. 1a  spanning 1 unit of 
length. In the first approximation L == 1 .  With a compass, reduce the opening 
to a scale r = 1 unit. Successively mark off, along the curve, lengths at this 
scale as shown in Figure 18 .lb. The curve is now approximated by a polygonal 
path with N = 4 line segments each 1 unit with a total length of 1 units. 
Reducing the scale to t results in a better approximation to the length of 
the curve as shown in Figure 1 8. 1  c. In other words, the length of a curve is 
approximated by subdividing it into a finite number N of line segments of 
length r units, summing these segments to get 

L(r) = Nr ( 18. 1 )  

where N is the number of polygonal lengths at scale r and L(r) is the 
approximate length of the curve at scale r. If the curve is smooth, we find 
that as r approaches zero this process always approaches a limiting value called 
the length of the curve, i.e. , 

L = lim L(r) . 
r---70 
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0 L(1 1 . 1 
(a) 

r • 113, N •4 
0 (b) L( 1 131 • 1/3 x 4 •  U33 
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r • t/9, N • 20 
L( 1 /91 • 1 /9 X 20 • 2. 222 

Figure 18. 1 Determination of the length L of a curve spanning [0, 1] by approximating the 
curve with N linear line segments. (a) Representation of curve at scale of r = I ; (b) representation 
of curve at scale of r = 1 ;  (c) representation of curve at scale of r = i . 

However, this procedure will not work for coastlines which are not 
smooth. Consider the map of the coast of Norway. From the results of this 
exploration, the unexpected properties of coastlines can be seen. Proceeding 
as we did for the smooth curve, determine several values of N corresponding 
to a spectrum of scale lengths (polygonal path lengths) r measured in 
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(a) 

4.0 

3.5 l(ll) = all1-D 
D = 1 .52 :!: 0.01 

3.0 +-----,-----r-----r----.------1 
-0.5 0.0 0.5 1 .0 1 .5 2.0 

log r(km) 
(b) 

Figure 1 8.2 (a) The coast of Norway. Note the fractal hierarchical geometry with fjords, and 
fjords within fjords, etc.; (b) the length L vs. scale length, r. The straight line indicates that the 
coast is fractal. The slope of the line yields the fractal dimension of the coast of Norway, 
D = 1 .52 (Note that l> is used in place of r). 
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kilometers. At each scale the approximate length of the coastline, in 
kilometers, is represented, as before, by N X r. Log10 L is then plotted 
against log10 r in Figure 1 8.2. 

One can sense the surprise
-
that awaited Richardson when he discovered 

that the points of the graph are closely fitted by a straight line (a line 
has the equation y = mx + b where m is the slope and b is the y-intercept) 
and that data for other countries were also represented by straight lines 
differing only in their slopes and intercepts. 

Richardson recognized that the number of polygonal segments at scale 
r satisfies the empirical law 

( 1 8.2) 

for constants D and K that depend on the particular coastline studied. This 
is known as Richardson's law. 

Replacing Equation ( 1 8.2) in ( 1 8. 1 ) , yields 

where 

L = K r
1-D 

0 < r � 1 and D > 1 .  ( 1 8.3) 

As a consequence, as r approaches 0,  L gets large beyond bound. Therefore, 
coastlines have effectively infinite lengths. 

Taking logarithms of both sides of Equation ( 1 8.3 ) yields 

logw L = ( 1  - D) log10 r + log10 K 

validating the linear graph of Figure 1 8.2 where the slope is 1 - D and the 
intercept is log10 K. 

If a similar analysis is carried out for any segment of a coastline, the results 
are a line of the same slope. This is due to the fact that any portion of a 
coastline exhibits the same statistical spectrum of ins and outs as the whole. 
In other words, coastlines are statistically self-similar. Any segment of the 
coastline is governed by the same power law. The value of D is called the 
dimension of the curve forming the coastline. It is a measure of how rugged 
the coastline is. The more rugged, the higher is D. From Figure 1 8.2, the 
dimension of the coast of Norway is found to be approximately D = 1 .52. 



Solving Equation ( 1 8.2) for D yields the formula, 

D =  
logN 

. 
log(�) 
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( 1 8.4) 

Curves that have the properties of being self-similar at any scale, nowhere­
smooth, and having finite segments of infinite length are called fractals. 

1 8.4 Geometrically Self-Similar Curves 

The only smooth curve that is self-similar at all scales is the logarithmic 
spiral, which is the configuration of many forms from the natural world such 
as shells, the horns of homed animals, and the spiral whorls seen on the 
surface of sunflowers (see Figure 1 8.3 ) .  In his book The Fractal Geometry of 
Nature [Man] , Mandelbrot presents a procedure for constructing an infinite 
variety of nowhere smooth curves that are geometrically self-similar. To 
understand how self-similar curves relate to Richardson's law, it is sufficient 
to set K = 1 and rewrite Equations ( 18. 1 )  and ( 1 8.2) as, 

L(r) = r x N  and L(r) = r x(
r
� } ( 1 8.5 )  

First consider a trivial example of a self-similar curve, the straight-line 
segment of unit length shown in Figure 18.4. This segment is self-similar at 
any scale. For example, at scale 1 ,  Figure 1 8.4 shows that three similar 
editions of the segment replicates the original. Thus, from Equations ( 1 8.5 ) ,  

and consequently D = 1 ,  the usual dimension of a curve in Euclidean 
geometry, also called the topological dimension. 

Next consider a less trivial example of a curve, self-similar at a sequence 
of scales (1)n , n = 1 , 2 , 3 , . . .  , known as the Koch snowflake. Since the curve is 
infinite in length, continuous and nowhere-smooth, it cannot be drawn as 
a smooth curve like the one in Figure 18 . 1 .  However, it can be generated by 
an infinite process, each stage of which represents the curve as seen at one 
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(a) (b) 

Figure 18.3 (a) A sea shell; (b) nautilus shell illustrating a logarithmic spiral. 

A a 
0 1 

b l  A' • • 
0 1 � 3 3 1 

A' - A  
means " is similar to" 

Figure 18.4 The unit interval, a trivial example of a self-similar curve with dimension D = 1 .  

of the scales in the above sequence. Figures 1 8.5a, 1 8.5b and 1 8.5c show 
views of the Koch snowflake at scales of 1 ,  1 ,  and i ,  respectively, both as 
linear segments on the left and incorporated into triangular snowflakes on 
the right. Each successive stage in the generation of the snowflake can be 
thought of as a close-up image of the curve, in which greater detail is visible. 

The snowflake is generated iteratively by replacing each segment of one 
stage by four identical segments of length one-third the original in the next 
stage. Therefore, N = 4 when r = 1 .  As a result, D can be algebraically 
determined from Equation ( 1 8.4) as, D = 11°g4 = 1 .2 1 68 . . .  which is the OgJ 



(aJ A 

l b) � A 
B � A  
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( d )  

C - B  
B' - A  
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Figure 1 8.5 The Koch snowflake, a nontrivial example of a self-similar curve with dimension I D =  1.2618. (a) Koch snowflake at scale ofr = 1 ;  (b) Koch snowflake at scale of r =  3 ;  (c) Koch 
snowflake at scale of r = -! ; (d) Koch snowflake at an advanced stage in its generation. 

dimension of this unusual "coastline". Of course, unlike actual coastlines, we 
have limited ourselves to scales that are powers of 1 .  However, as for actual 
coastlines any portion of the curve is geometrically similar to the whole. 
This property of self-similarity at a sequence of scales is more evident in 
Figure 1 8.5d, a Koch snowflake at an advanced stage in its development. This 
figure shows that it is made up of four self-similar copies of itself. The Koch 
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curve can also be expressed as a re-entry form in the sense of Section 1 3.6 and 
Figure 13 .7 ,  as I will demonstrate in Section 1 8.5. 

The relationship between N and r, expressed by Equations ( 18.4) and 
( 18.5 ) ,  is quite general and is illustrated for three other geometrically self­
similar structures in Figures 1 8.6, 1 8.7 and 18.8. Figure 1 8.6 is a curve referred 
to as Sierpinski's gasket. It is created by removing an equilateral triangle from 
the interior of a large equilateral triangle so that the larger triangle is replaced 
by three self-similar copies of itself, i.e., N = 3 ,  each with a side one-half 
as large as side of the original triangle, i.e., r = t .  Thus, according to 
Equation ( 1 8.4), D = 1 .585 . . . .  

The point set in Figure 1 8.7 represents six stages in the generation of 
what Mandelbrot calls a Cantor dust. Starting with the unit interval, each 
stage is generated from the preceding stage by removing the middle third 
of each remaining subinterval. What remains after an infinity of stages is 
an infinite set of points interspersed within empty space. Its dimension, 
0.6309 . . .  , is determined from Equation ( 1 8.4) with N = 2 and r = t . It would 
be difficult to illustrate even a few stages in the generation of a Cantor dust, 
so Figure 1 8.7 shows an analogous sequence of bars with finite thickness. In 
Section 19.2, Cantor sets will be shown to be key to understanding the 
relation between chaos and fractals. 

Figure 1 8.8a illustrates a final example of a fractal. It depicts the first three 
stages of a space-filling Hilbert curve of dimension 2 that fills up the interior of 
a square. This curve has practical applications in image processing. Generally, 

Figure 18.6 Sierpinski's gasket. The basic construction steps of the Sierpinski gasket. 
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Figure 18.7 Six stages in the generation of a Cantor triadic bar, an approximation to a Cantor 
dust with dimension D = 0.6309. 

(a) (b) 

(c) (d) (e) 

Figure 18.8 (a), (b), (c), (d) The first four stages in the generation of a Hilbert curve used to 
create an image by a dithering algorithm. From stage to stage, the size of the line segments are 
reduced by a factor of t ; (e) final image. 
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a black and white photographic image consists of a continuum of shades of 
gray. The scene is divided up into tiny squares called pixels , and each pixel 
is assigned a number from 1 to 1 0  to indicate the intensity of shading from 
white, 1 ,  to black, 10. One can then scan the rows of pixels and activate each 
site to recover the image. Although there are generally a very large number of 
pixels, this process can be abbreviated by activating only those sites along an 
advanced stage of the Hilbert curve, as in Figure 18.8b. As you can see, even 
though only black and white is used in this dithering process, even a relatively 
low stage in the development of the curve is dense enough in the image to 
recover a good facsimile of it. 

Mandelbrot coined the term fractal curve to refer to curves with dimension 
1 < D � 2, fractal surface for surfaces with dimension 2 < D � 3 ,  and fractal 
point sets or dusts for sets with 0 < D � 1 .  In the next section I will show how 
the properties of self-similarity can be exploited to recreate fractal forms 
from skeletal renderings of its geometry. The key lies in the notions of self­
referentiality and transformation. 

18.5 Self-Referentiality of Fractals 

We have all experienced the effect of multiple reflections in a pair of parallel 
mirrors such as are commonly found in a barber shop. The image of ourselves 
is replicated at increasingly smaller scales, until we shrink to a point in the 
distance. A similar regressive set of images is generated by the cartoonist, 
Janusz Kapusta's self-referential painter in Figure 1 8.9. We can think of this 
as a feedback process such as the one diagrammed in Figure 1 8. 10. Here the 
image is inputted, then transformed, and the transformed image is fed back to 
be transformed yet again. The process continues indefinitely as did the logistic 
map of Section 1 7.3 . 

The barbershop transformation has little interest, since the image 
ultimately shrinks to a point. However, consider the image of a circle fed 
to a transformer that: 

( 1 )  shrinks the image to a circle with radius one-half of the original; 
(2 )  juxtaposes three copies of the shrunken circle in the manner shown in 

Figure 1 8. 1 1 to form the transformed image. 
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Figure 1 8.9 A self-referential image by Janusz Kapusta. 

���-----�-··_=_,_�_> 
____ �----··� 

Figure 18.10 A one-step feedback machine. 

Repeating this transformation results in a structure that resembles more 
and more the Sierpinski gasket. Figure 1 8. 1 lb shows that what is chosen as 
the initial stage is unimportant; it is the rules of transformation and the 
feedback process that results in the ultimate structure. Figure 1 8. 1 1  c shows 
that if the limiting structure, the Sierpinski gasket, is taken to be the initial 
stage of this process, it remains unchanged, i.e., it is a fixed point of this 
transformation. 
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Figure 1 8. 1 1  Three iterations of the transformation that produces a Sierpinski gasket. 

The transformations that we have at our disposal are contractions, 
translations, rotations, reflections and transformations which transform 
rectangles to arbitrary parallelograms, so-called affine transformations. These 
all transform lines to lines. We can also consider nonlinear transformations 
which map lines to curves. This gives a tremendous amount of flexibility 
to the generation of complex results from simple rules. 

The fact that the Koch curve can be subdivided into four self-similar 
copies of itself suggests a feedback process to generate Koch curves. Begin 
with a rectangular image, shrink it by a factor of three, and juxtapose four 
of the scaled images as shown in Figure 1 8. 1 2 .  Repeating this process gives 
rise to the Koch curve. But an identical initial rectangular image when 
transformed to three rectangles of different sizes, proportions, and orientations 
and one line segment as shown in Figure 1 8. 13a gives rise to the beautifully 
complex image of Barnsley's fern in Figure 18 . 13b. In Figure 1 8. 14, Peitgen 
has shown that through an ordered series of transformations we can gradually 
transform the Koch curve to Bamsley's fern. 
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Figure 18. 12 Starting with an arbitrary shape, a rectangle, iteration of the Hutchinson operator 
produces a sequence of images which converge to the Koch curve. 

I � w, 
-

l __ _ -" 

Figure 18.13 Bamsley' s fern. The small triangle 
in the initial image and its first copy on the right 
indicate where the "stem" of the fern is attached 
to the rest of the leaf. 
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Figure 18.14 By changing the parameters of the transformation for the Koch curve continuously 
to those of the fern, the generated image smoothly transforms from one fractal into the other. 
The lower nine images of the figure show some intermediate stages of this metamorphosis. 

Figure 18.15 A fractal scene by Kenneth Musgrave. 

This approach to generating fractals is leading to revolutionary ways of 
understanding how complex structures arise from simple ones, and it is 
being applied to may applications from image processing to generation of 
fractal scenes for movie sets such as that shown in Figure 18 . 1 5  generated 
by Kenneth Musgrave. 
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18.6 Fractal Trees 

The complex patterns associated with fractals are the result of repeatedly 
applying a simple rule through a feedback mechanism. This has already 
been seen in Section 1 3 .6, where the Fibonacci series is pictured in 
Figure 13 .8a as a form F that re-enters its indicational space to give the 
series of boxes at varying depths shown in Figure 13.8b. The number of 
boxes at each depth represents the Fibonacci numbers: 1 ,  1 ,  2, 3 ,  5 ,  8, . . . . 

In Figure 18 . 16a F is represented as a structural tree where horizontal lines 
are drawn at successive depths. Counting the outside space as depth 0, there 
is a single F at depths 0, 1 ,  and 2 represented by * s. This hierarchy of 
depths translates into the self-referential statement, 

( 1 8.6) 

Notice that this tree can be thought of as an infinite logic device of the 
form described in Section 1 6.8. If each of the horizontal lines is interpreted 
as a "not" gate and the star signifies F, Figure 1 8. 16a is an expression of 
Equation ( 1 8.6) using the notation of Section 1 6.8. Below each * appears 
a replica of the basic form as shown in Figure 1 8. 16b up to level five as the 
tree's branches unfold according to the Fibonacci series. Notice how a 
complete copy of the entire tree lies beneath each * ,  a manifestation of 
the self-similarity of fractals. Thus Figure 1 8. 1 6b describes the tree just as 
Figure 13 .8b describes the form by the recursion relation, 

( 1 8.7)  

all aspects of the same fractal structure. 
With this introduction to self-similar forms, return to the Koch snowflake. 

Kauffman [Kau1 ]  has examined the Koch snowflake from this standpoint, 
and referring to Figure 18. 1 7a, described it as follows: 

"These attempts to indicate the re-entry are both leading and 
misleading. It is composed with an embedded tree that is an 
obvious relative of the form of re-entry in Figure 1 8. 1 6. K is 
the set of ends of an embedded self-similar tree T as shown in 
Figure 1 8. 1 7b. Remarkably, T is the tree associated with the 
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(b) 

Figure 18.16 A fractal tree representing the Fibonacci sequence. 

1\ K K 
K = - K_/ \._ K -

(a) (b) 

Figure 18.17  The Koch snowflake as a fractal tree. 
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form T= \T !I:II T\. Just as the middle parts of K are singled 
out geometrically, in T they are singled out formally. T embodies 
the abstract structure of K. There are two forms associated 
with K, 

A = \A A A\ indicating the three-fold cut, and 

B = \ B B B B \ indicating the four-fold duplication, 

i.e., p(A) = 3 and p(B) = 4 and the dimension D is given by, 

D(K) = logp(B) 
logp(A) 

log(duplicatim rate) 
log(cut rate) 

This holds for many simple recursions and allows a definition of 
dimension for abstract forms." 

Thus the dimension of the abstract form given in Figure 1 8. 1 8  is: 

where, 

A = \ A A A \ indicates the three-fold cut, and 

B = \B B B B B \ indicates the five-fold duplication. 

Figure 18.18 A fractal tree with dimension :�:; . 
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Therefore, the dimension of this fractal is, 

18.7 Fractals in Culture 

D = logS
. 

log3 

Structures and designs with fractal properties appear quite naturally in 
many cultures. I will present two examples from Ron Eglash's book African 
Fractals [Egl]. 

In the western part of the Cameroons lies the fertile grasslands region 
of the Bamileke. Eglash describes their fractal settlement architecture. 

"These houses and the attached enclosures are built from 
bamboo - Patterns of agricultural production underlie the 
scaling. The grassland soil and climate are excellent for farming, 
and the gardens near the Bamileke houses typically grow a dozen 
different plants all in a single space, with each taking its 
characteristic vertical place. But this is labor intensive, and so 

(a) (b) 

Figure 18.19 (a) Fractal simulation of Bamileke architecture. In the first iteration ("seed 
shape") ,  the two active lines are shown in gray. (b) Enlarged view of fourth iteration. 



Seed shape (all lines are active lines) Second iteration 

0 �  
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Third iteration 

Figure 1 8.20 Fractal simulations for Ethiopian processional crosses through three iterations. 

more dispersed plantings are used in the wider spaces farther 
from the house. Since the same bamboo mesh construction is 
used for houses, house enclosures, and enclosures of enclosures, 
the result is a self-similar architecture - The farming activities 
require a lot of movement between enclosures, so at all scales 
we see good-sized openings." 

Eglash's fractal simulation in Figure 1 8 . 1 9  shows how this scaling 
structure can be modeled using an open square as the seed shape. 

Many of the processional crosses of Ethiopia indicate a threefold fractal 
iteration (see Figure 1 8.20). Eglash suggests that the reason that the iteration 
stops at three may be for practical reasons. Two iterations is too few to get 
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the concept of iteration across, while more than three presents fabrication 
difficulties to the artisans. 

18.8 Conclusion 

Since Mandelbrot first discovered fractal geometry in the fluctuations of the 
options market, this subject has developed to the point where it now appears 
to be generic to almost all naturally occurring processes. Astronomers are 
using it to study star clusters, material scientists to study the nature of metallic 
surfaces and patterns of fracture, geologists use it to study land use patterns, 
and medical researchers use it to study branching patterns in capillaries. 
The next chapter will show how fractals are related to a general study of 
dynamical systems. 



1 9  
Chaos and Fractals 

Mathematics is the only infinite human activity . . .  humanity won't 
ever be able to find out everything in mathematics, because the 

subject is infinite. Numbers themselves are infinite. 

Paul Erdos 

19. 1  Introduction 

The theories of fractals and chaos became areas of intense mathematical 
study in the 1970's before mathematicians realized that they are intimately 
connected. This chapter is devoted to gaining an understanding of that 
connection. Again, number provides the key. 

19.2 Chaos and the Cantor Set 

Let us return to the logistic equation introduced in Chapter 1 7  and given by 
the equation, 

Xn+l = a  Xn (1 - Xn ) ( 1 9. 1 )  

with initial value x0. It was previously seen that for values of xo < 0 or 
xo > 1 the trajectories, i.e., the series of points, xo, X1 > Xz, . . . escape to infinity. 
If a � 4, and 0 � Xo � 1 ,  then it follows that 0 � x1 � 1 and all further 
trajectory points reside in the interval between 0 and 1 ,  [0, 1 ] .  But this is no 
longer true when a >  4. Even though the initial point xo lies in the interval, 
[0, 1}, the image point Xt may lie outside of [0, 1 ]  and therefore the trajectory 
will escape to infinity. What is so special about the number a =  4 and what 

4 1 7  
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(a) (b) 

Figure 19. 1  Graphical iteration x - > ax( l - x) (a) and x - > i + c (b). 

is the structure of the set of points that are trapped in the interval [0, 1] as 
compared to the points leading to escape ? The parabola, y = 3x ( 1  - x), 
corresponding to a =  3 is shown in Figure 19 .la. Notice that the portion of 
the parabola corresponding to the interval [0, 1 ]  lies in the unit square and 
the maximum point of the parabola is below the line, y = 1 .  For all values of 
a <  4, the peak value is less than y = 4. You can easily check that any initial 
point 0 � Xo � 1 maps to a point, XJ, in the interval [0, 1] and all trajectories 
corresponding to such values of "a" must be trapped within [0, 1 ] .  

For a = 4, the peak of the parabola is tangent to y = 1 ,  whereas for 
a > 4, the maximum is above y = 1 .  Consider, a = 4.5 , whose parabola 
is shown in Figure 19 .2a, and consider the backwards trajectory of 
Equation ( 19.2). In other words, beginning with a transformed value y, what 
values of x map to y?  Figure 1 9.2b shows that for y = 1 ,  x1 and x2 map to y. 
Working backwards another step, four additional points map to either x1 or 
Xz (see Figure 19.2c). We expect a series of 2, 4, 8, 1 6, . . .  points to map over 
successive stages to our starting value of y .  

Figure 19.2 shows the dynamics corresponding to a value of a =  4.5 with 
y = 1 .  Any initial point, xo, within the interval between x1 and x2 maps to 
x > 1 and leads to escape. The regions of capture are indicated by dark lines. 
Going back another step, four points map to x1 and x2• These points are 
boundary points of two additional escape regions of the next stage of this 
process. Reading the graph, it is easy to see that any point outside of the 
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Figure 19.2 Backward iteration generating the Cantor set. Encirclement of Cantor set through 
backward iteration of the unit interval (a = 4.5) .  

darkened regions maps, in either one or two steps, to values of x > 1 and 
escape. The two new regions of escape lie in the midst of the two darkened 
regions of the previous stage. Going back yet another step, we see that eight 
intervals of escape are now demarcated. Four additional intervals have 
appeared in the midst of the four previous darkened intervals. This process 
continues ad infinitum, with new intervals of escape appearing in the midst 
of previous darkened intervals. 

This dynamic was seen in the structure of the Cantor set (see 
Section 1 8.4) , where intervals are removed from the midst of previously 
defined intervals leading at the end to a "dust". Here, only the points within 
[0, 1 ]  corresponding to a Cantor dust lead to bounded trajectories; all other 
points escape. In the next section I will demonstrate how Mandelbrot was 
able to generalize these dynamics to two-dimensional point sets with the 
result being the pictures that we now associate with fractals. 
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19.3 Mandelbrot and Julia Sets 

I have shown that the logistic equation can be transformed to its counterpart 
equation, 

Zn+l = z; + c  

by making the transformation, 

1 Zn d � Xn = - - - an a = 1 + -v 1 - 4c .  
2 a 

(See Appendix 1 7 .A. ) 

( 1 9.2) 

For example, the logistic equation for a = 3 and its counterpart for 
c = -t  is shown in Figure 19 . 1h. Details can be found in [Pei]. Whereas all 
values in [0, 1] are trapped (contained in the unit interval) for the logistic 
equation, all values in the interval, [--I,-I] , are trapped for its counterpart. 
So long as the peak value of the logistic equation is contained in the unit 
square, all such trajectories will be trapped, and, as we have seen, this 
occurs for a � 4. For its counterpart, the minimum must be contained 
within the essential square (the square with vertices (±I , ±]-) and this occurs 
for -2 � c � t .  

What has been achieved? The form of our equation has been altered, but 
we are still considering only trajectories along a line. To expand the analysis 
to the plane we generalize x to a complex number z of the form z = x + iy 
where i = � . We have already introduced the notion of complex number 
z in Section 13 .4 and pictured z as the x, y-coordinate of a point in the 
plane, (see Figure 13.3) .  In Figure 19.3, z is represented by an arrow or vector 
with distance r from the origin called the magnitude or modulus of z or I z I ,  
and orientation with respect to the x-axis by angle () called the argument of 
z or arg z. Two complex numbers Zl = x1 + iy1 and zz = Xz + iyz can be added 
or multiplied in the usual way, e.g. , 

Z1 + Zz = (xl + iy1 ) + (xz + iyz ) = (xl + xz) + i (yl + yz) and 

Z1Z2 = (xl + iyl ) (Xz + iyz ) = XIYI - XzYz + i (XIYZ + XzYI ) 

where we have made use of the fact that i X i = -1 . It can be shown that 
the result of addition is to add the two arrows corresponding to Z1 and zz 
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lm 

y z=x+iy 

X 

r= l z l  
9•arg z 

Re 

Figure 1 9.3 Representation of a complex number. 

vectorially as shown in Figure 19.4a (see also Appendix 3C). On the other 
hand, multiplication results in a complex number with magnitude the product 
of the magnitudes of ZI and zz, r1r2 , and argument the sum of the arguments 
of Z1 and zz, arg Z1 + arg Zz as shown in Figure 19.4b. 

Mandelbrot investigated the intricacies of the simple quadratic equation, 

Zn+I = z� + c ,  ( 1 9.3 ) 

for complex numbers z and c. He discovered that, for certain values of c, 
depending on the initial value Zo· all trajectories that start out in some 
bounded region of the plane are trapped in this region just as for the above 
case where c was a real number. These regions are called basins of attraction. 
For other values of c, all but an isolated set of initial values lead to bounded 
trajectories (again as we saw for the case of c real) ; the others escape to 
infinity. The set of c values that lead to bounded trajectories constitutes 
Mandelbrot's famous set shown in Figure 19.5. 

Although at first glance the Mandelbrot set looks like nothing more than 
an amorphous inkblot, it has a complex and well studied structure. It first 
appears as a heart-shaped region with many discs of varying sizes attached 
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Re 

z ,  z. 

Re 
1 z , Z 2i= IZ,I IZJ 

a, =arg z, 
62 =arg z2 
e3=arg z, z2 

=arg z, + arg Z2 

Figure 1 9.4 (a) Addition of complex numbers; (b) multiplication of complex numbers. 
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(a) (b) 

Figure 1 9.5 (a) The Mandelbrot set; (b) a Mandelbrot at a smaller set appears in its tail. 

to it and with additional disks and hair-like protrusions extending from the 
boundary of these discs. To really appreciate the complexity of this creature, 
we must descend into the depths of the computer by scaling up the region 
around the boundary. Much to our surprise, we see shapes of considerable 
beauty, variety, and complexity. Occasionally we even encounter an identical 
scale model of the Mandelbrot set as shown in Figure 19.5b. 

The Mandelbrot set is sometimes said to be the most complex structure 
ever to be created by a computer. What is even more astounding is that it 
can be generated with only about eight lines of computer code. This is 
possible because whether a value of c is in the set, or not, can be determined 
by using Zo = 0 as an initial value in Equation ( 19.2) . If the ensuing trajectory: 

2 ( 2 )2 2 0, c, c + c, c + c + c + c , . . . 

remains within some preset bound after some prescribed large number of steps, 
it is very likely that that value of c is in the set. Otherwise it is not. 

Consider the basins of attraction in z-space that are associated with 
different values of c from the Mandelbrot set. The boundary of these sets are 
called julia sets after the mathematicians Gaston Julia ( 1 893 - 1978) and 
Pierre Fatou ( 1 878- 1929) ,  who studied them. First of all, the Julia set for 
c = 0 is easily seen to be the unit circle. Any initial point within this circle 
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is attracted to z = 0 which is called a stable attractor; any point outside of 
the circle escapes to infinity. Any point that begins at z = 0 or 1 remains 
there; in other words 0 and 1 are fixed points of the transformation. Whereas 
z = 0 is an attracting fixed point since nearby points move towards 0, z = 1 
is a repelling fixed point since nearby points move away from it. 

Any other value of c from the heart-shaped region of the Mandelbrot set 
will be bounded by a simple curve corresponding to the attracting intervals for 
the logistic equation with values of a <  3 .  One such basin with its attracting 
point is shown in Figure 19.6a. Values of c internal to a disc correspond to 
trajectories that asymptotically approach periodic orbits as described in 
Section 1 7.2 (see Figure 19.6b) .  As c is decreased within the interval from 
-2 � c � t along the real axis these values first enter the heart-shaped 
region corresponding to Julia sets bounded by simple curves. Then they 
enter a disc resulting in orbits of period 2, then a disc of period 4, 8, 1 6, . . .  , 
accumulating at the point F called the Feigenbaum limit corresponding to 
a =  3.569 . . .  (see Section 1 7.2) .  If c is decreased further, a point is reached 
corresponding to a =  3.83 1  . . .  at which a 3-cycle is encountered after which 
the system enters the realm of full-blown chaos in which cycles of all 
lengths are possible. The c values are eventually decreased to a value outside 
of the Mandelbrot set, which gives rise to a Julia set that is a Cantor dust's 
worth of isolated points (see Figure 19.6c) which lead to bounded trajectories 
again analogous to the logistic equation in a state of full-blown chaos for 
a > 4 depicted in Figure 19  .2. Yet another possibility is represented by 
dendritic structures l ike the one shown in Figure 19  .6d. Diffusion limited 
processes of growth in nature have been found to produce dendritic patterns 
[San]. Sander describes this process: 

"Imagine growing a cluster by adding one particle at a time so 
that as each particle comes in contact with the growing object, 
it sticks and never tries another - such a process is called 
aggregation. No rearrangement takes place at all. Now suppose 
the particles diffuse to the cluster by means of a random walk: a 
sequence of steps whose magnitude and direction are determined 
by chance. The aggregation of particles by means of random 
walks is what is called diffusion-limited aggregation. That is, it 
simply stays put." 
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(a) (b) 

(c) (d) 

Figure 1 9.6 Julia sets. (a) Basin of an attractive fixed point; (b) basin of an attractive cycle of 
period 3; (c) Cantor dust resulting from a c value outside of the Mandelbrot set; (d) a dendritic 
structure. 

The self-similarity of the Julia sets were well known to Julia and Fatou. 
They were aware that all of the points of a Julia set could be generated from 
iterations by Equation ( 1 9.3 ) of any of its finite connected parts. However, 
it is only in recent years, through the use of the the computer, that we have 
begun to appreciate what this means in aesthetic terms. It is easier to 
comprehend this self-similarity by examining the examples shown in 
Figure 1 9.6. However, things get more interesting when we consider values 
of c on the boundary of the Mandelbrot set. Here the Julia sets take on 
phantasmagoric images of spiral shapes, dragons, and organically-appearing 
spines such as the one shown on Figure 1 9.7 .  What's more, the Mandelbrot 
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Figure 1 9.7 A "dragon" shaped Julia set for a value of c at the boundary of the Mandelbrot set. 

set appears to be a catalogue of Julia sets in that, near a value of c on the 
boundary, there appears a facsimile of the Julia set corresponding to that value 
of c. The Mandelbrot set brings to light a tangible vision of the relationship 
between order and chaos and the boundary between them. 

19.4 Numbers and Chaos: The Case of c = 0 

In the simplest of Julia sets, the unit circle for which c = 0, consider an 
initial point zo of a trajectory located at a point in the complex plane with 
modulus r = 2 and angle, arg zo = 45 degrees. Replacing this value in 

Zn+l = Z� ( 1 9.4) 
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1 / 4 
2 / 3  1 / 6 

1 / 2 

2 / 3  
3 / 4  

Figure 1 9.8 A coordinate system formed by field lines and equipotential lines for the unit disk. 
The angles of the field lines are given in multiples of Zn (i.e., q = Zna, 0 � a � 1 ) . A two stage 
representation of the numbers on the unit interval in the base two "decimal system". 

and using the fact that multiplying z by itself squares its magnitude and 
doubles its argument (see Section 19.3) ,  we find that r1 = 22 and arg z1 = 
90 degrees. Likewise, rz = 24 and arg Zz = 1 80 degrees, r3 = 28, arg Z3 = 
360 degrees, etc. A rapid escape to infinity along an angle-doubling route 
occurs. The same scenario holds for any point beginning its trajectory outside 
of the unit circle. If the point starts on the circumference of the unit circle, 
then it remains on the circle but moves along an angle-doubling trajectory. 

Next we create a new coordinate system of radial lines and circles, as 
shown in Figure 19.8. The lines are labeled by angular fractions of a circle, 
e.g., "fi = 45 degrees, t == 90 degrees, t = 1 80 degrees, 1 = 360 degrees while 
1 = 540 degrees. Only fractions between 0 and 1 need be considered since 
larger angles represent a distance more than once around the circle, e.g., 
540 degrees = 1 80 degrees = t .  Angles can be represented either as angles 
mod 2n (where 2n radians equals 360 degrees) or by numbers mod 1 ( the 
fractional parts) . The circles are of radius 2, 22, 2

4
, 28 etc. The dynamics 

can be visualized in terms of angle doublings. 
To make the dynamics of the trajectories easier to compute, the angular 

positions of the radial lines are represented in base two, using only the 
digits 0 and 1 .  Figure 19.9 shows how this is done. First the unit interval is 
divided in two parts, with the midpoint indicated by t = 0. 1 ( in binary). Any 
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Figure 1 9.9 Subdividing the unit interval by binary "decimals". 

point in the first half of the interval has decimal expansion O.Oxxx while any 
point in the second half of the interval is represented by decimal 0. 1 xxx. 
Now subdivide the unit interval into four equal parts with dividing points 
t = 0.0 1 ,  % = 0. 10, t = 0. 1 1 . Any point in subinterval (i) (resp. ( ii ) ,  ( iii) 
and ( iv ) )  is represented by O.OOxxx (resp. 0.0 1xxx, 0. 10xxx and 0 . 1 1 xxx) . 
Continuing in this way, any point in the unit interval can be represented 
by a sequence of O's and 1 's. 

The main reason for using base two to represent fractions is that 
multiplication by 2 is carried out by merely shifting the decimal point one 
space to the right just as with multiplication by 10  for base 10  (see Section 
1 7.6). Therefore a number represented by 0.01xxx has a represention 0. 1 xxx 
when multiplied by 2 and l .xxx when mutiplied by 4. If these decimals 
represent angular positions on a circle, the 1 before the decimal can be 
eliminated since it merely represents once around the circle. The decimal 
part of the number is referred to as mod 1 .  

Figure 19. 10  shows a binary decomposition of the radial lines and circles 
corresponding to the dynamics of the c = 0 Julia set. Here the unit circle is 
shown at the center in black. All radial lines in the upper half of the diagram 
are located at fractional parts of the circle with leading digits of 0, while 
all lines in the lower half have leading 1 's. Note that the decimal point is 
eliminated. The first quarter within the circle has leading digits of 00, the 
second quarter 0 1 ,  the third quarter 10  and the fourth 1 1 .  Doubling any 
angle in 00 and 10  leads to an angle in region 0 as can be seen by multiplying 
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Figure 19.10 Binary decomposition for c = O. The small black disk in the center is the unit disk, 
the large circle has radius 1 6. Pictured are the two stage- 1 cells of level set, the four stage-2 
cells, and the eight stage-3 cells. Cells are shaded according to their labels; even labels give 
white cells, odd labels give black cells. 

O.OOxxx and O. lOxxx by 2. Likewise doubling the angles in 01 and 1 1  leads 
to an angle in the region marked 1 .  The regions have been color coded with 
black and white so that a radial line always doubles from a region within one 
circle to another region of the same color in the next circle, i.e., white to 
white or black to black. Descending one more step, the circle is divided into 
eight sectors. Again multiplication of the angle by 2 results in sending two 
of the octants into one of the quartants of the next stage, e.g. , 101  and 001 
are mapped to 0 1 .  The sequence of colors corresponding to a given radial 
line can therefore be read from the outer to inner region with 1 -black (B), 
0-white {W), e.g., lOlxxx = BWB . . . .  Successive circles are spaced by the 
series of radial distances 2, 22, 24, 28, • • • •  

The dynamics can now be visualized as moving a trajectory point located 
in one sector to a transformed point in a sector of the next stage. The more 
articulated are the regions, the more accurate will be the dynamics. For 
example, five stages are shown in Figure 19. 1 1  and the approximate positions - -
of the repeating decimals 0.010101 . . .  = 0.01 and 0. 1 01010  . . . = 0.1 0  are 
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Figure 19. 1 1  Binary decomposition and field lines. Binary decomposition allows us to identify 
the angle of field lines. Shown are the two angles 1 and 1 with binary expansions 0.0101 . . . 
and 0. 1010 . . .  which can also be read off from the labels of the cells that the field line passes 
through. 

indicated. Notice that the placement of the lines becomes less precise as 
one goes to later stages in the dynamical process. It is for this reason that no 
degree of accuracy is ever enough to specify the initial point of the trajectory. 
There will always be a later stage in which the accuracy degenerates. 

In this system, points represented by rational fractions have decimal 
expansions that repeat after some point. The number of repeating digits is 
called the length of its cycle. For example, consider the repeating decimal 

- -

of cycle 2, 0.010101 . . .  or 0.0 1 . Let x = 0.0 1 . Therefore, 

x = 0.010101 . .  . , 4x = 1 .010101 . .  . . 

Subtracting the first from the second yields, 

1 
3x = 1 or x = 3 .  
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Likewise 1 = 0. 10 10 10  . . .  = 0.10 as seen by multiplying the decimal 
expansion of 1 by 2. The expansion of 1 is therefore obtained from 1 by 
another multiplication by 2 or 1 = 1 .0 1 . If 1 is considered to be the angle 
480 degrees on the unit circle, we see that by dropping the 1 this angle is 
the same as 1 20 degrees = 1 ·  We se� then that a trajectory beginning on the 
unit circle at the position 1 = 0.01 moves to 1 = 0.10 and then returns 
to 1 exhibiting a cycle of period 2. In a similar way, a trajectory beginning at 
any repeating decimal with a cycle of length n is periodic of period n. 

Notice that the point, z = 1 ,  at radial line 0 is a fixed point since 
iterations with Equation ( 19.4) leave it unchanged. However this fixed point 
is repelling, since perturbing by a small amount into the circle results in a 
trajectory approaching the attractive fixed point at z = 0; perturbing it outside 
the circle sends it marching towards infinity. The presence of two fixed 
points, Z! and zz, one attracting and one repelling holds for all Julia sets and 
is what was encountered in Section 1 7.2 for the logistic equation on the 
real line. 

One further example will illustrate the close relationship between number 
and chaotic dynamics. Consider a point beginning its trajectory on the unit 
circle at the angle t = 0.0010101 . . . = 0.001 . Such a point must be preperiodic 
since its first angle doubling brings it to 1 and thereafter it enters into a 
cycle of period 2. It can be shown by a simple calculation that all rational 
numbers with odd denominators have periodic decimal representations while 
those rationals with even denominators have preperiodic representations. 

Therefore it can be seen that all rational numbers on the unit circle must 
represent points of either periodic or pre-periodic orbits. Any point on the 
unit circle beginning at a rational angle must be periodic, with period equal 
to the number of digits in its cycle. Likewise, any point that starts at an 
irrational angle, represented by a non-repeating decimal expansion, never 
repeats. In fact it can be shown that such points will visit an arbitrarily close 
proximity of each point on the unit circle during its trajectory. 

19.5 Dynamics for Julia Sets with c '* 0 

This base 2 representation of trajectories can be exploited to track the 
dynamics of Julia sets for which c '* 0. The key is an important theorem of 
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Figure 19.12 Riemann mapping theorem. A one-to-one correspondence between the potential 
of the unit disk and the potential of any connected prisoner set (Julia set). 

complex variables known as the Riemann mapping theorem which states that 
a unit circle of the complex plane (with certain weak restrictions) can be 
mapped onto any region of the complex plane bounded by a closed curve so 
that the radial lines and concentric circles are mapped to curves that continue 
to be mutually perpendicular, as shown in Figure 19. 1 2. 

The mathematician Adrien Douady and John Hubbard [Dou-H] saw that 
this simple picture could be physically modeled by a cylinder of unit radius of 
negative electrical charge perpendicular to the unit circle and infinite in both 
directions. An electrostatic field is set up in which field lines project radially 
from the circle and concentric equipotential circles propagate into the space 
beyond the unit circle, as shown in Figure 19. 1 2. By field lines we mean 
curves on which a negatively-charged particle introduced into this field will 
move. Equipotential curves are always perpendicular to the field lines and 
they are curves on which electrical charges can move freely without the 
expenditure of work. 

A series of such transformations is shown in Figure 1 9. 13 .  Notice how 
the attracting fixed point is displaced from z = 0 and the Julia set (boundary 
of the attracting basin) is deformed as c changes its value from 0 + Oi to 
-1 + Oi. Notice that the curve pinches in when c = -0. 75 and thereafter gives 
rise to a pair of attracting points. Actually these points are periodic points 
of period 2. A trajectory beginning at one point oscillates back and forth 
between the two points. A trajectory beginning near one of the points 
approaches asymptotically to a periodic orbit between the two points. 
Whereas the unit circle has two fixed points, a repelling point at z2 = 1 and 
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0 
c = 0.0 + Oi c = -0.25 + Oi C =  -0.5 +Oi C = ·0.7+0i 

c = -0.75 + Oi C = ·0.8 +0i C = -0.9 +Oi c _= -1 +Oi 

Figure 19.13 Starting from the Julia set for c = 0 ( the circle) we decrease the parameter 
to c = - 1 .  The Julia set develops a pinching point for c = -0.75 and is boundary of a 
period-2 attractor for the remaining plots. 

an attracting point at z1 = 0, each of the transformed Julia sets has its 
attracting fixed point, z1 ,  at a pinch and its repelling point, z2 , at the right 
endpoint on the real axis. 

Figure 19. 1 4  shows the binary decomposition of the field lines and 
equipotential curves for the last Julia set in this series, i.e. , c = -1 .  Notice 
that the field lines and equipotential curves are perpendicular but no longer 
straight. The field lines with angles 1 = 0.01 and f = 0. 10 are shown 
incident to the pinch point. With a higher resolution this diagram can be 
used to produce the more detailed result of Figure 19 . 15 .  The equipotential 
curves correspond to the circles from which they were mapped (see 
Figure 19. 1 2 ) ,  and the angular positions of the field lines refer to the 
corresponding positions on the circle. The dynamics are identical to 
the case of the unit circle but now mapped to the new context. Trajectories 
continue to evolve by moving from field lines labeled by arg z to lines 
labeled by 2arg z while moving out to greater and greater moduli. 

Notice that the pinching point has a pair of field lines attached to it 
and that these angles must correspond to 1 and f so that angle doubling 
keeps the pinch point unchanged, i.e. ,  the pinch point is a fixed point. 
Notice that the field lines 7; and i are also pinch points (see Figure 19. 1 5 ). 
This pinch point is preperiodic. After one iteration, the trajectory moves 
to the fixed point ZI ·  In fact, there are numerous pinch points, all preperiodic 
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Figure 19 . 14 Binary decomposition for c = -1 .  The two field lines with angles 1 = 0.01010 . . .  
and j = 0. 1010 1 . . .  are shown. 

Figure 1 9. 15  Equipotentials and field lines for c = -1 .  The angles of the field lines are given in 
multiples of 27r. 
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points with respect to fixed point z1• A Julia set with a cycle of period three 
is shown in Figure 19.6b. At the pinch point, which is again an attracting 
fixed point of the transformation, we now have three incident field lines. 
Since angle-doubling must leave this point fixed, the lines must have values 
t = 0.001 , � = 0.010 ,  and t = 0.100 whose decimal representations are 
permuted when multiplied by 2. Notice that the expansions of the field line 
angles indicate the nature of the dynamics. We should point out that not 
all fixed points represented by rational fractions are indicative of periodic 
behavior. For example, the dendritic structure shown in Figure 19.6d is a 
Julia set corresponding to c = i. It has a fixed point with three field lines 
attached to it with angles � ,  1 ,  1 (not shown) yet this transformation has 
no periodic orbits. 

A final example of a Julia set for a value of c in the realm of chaos is 
shown in Figure 19. 16. Notice the field lines in the sector labeled 01 1 0. The 
location of the trajectory point in the previous stage, i.e., its preimage, must 
be either in the sector 101 10  or 001 10. However, notice that the previous 
stage takes the form of a figure eight and that both 1 01 10 and 001 10  merge 

Figure 1 9.16 Figure-eight level set. If not all preimages of the cells at one level are disjoint, 
the sets at the next level form a figure-eight shape. 
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Figure 19.17 A Cantor set in the complex plane. For c = -2.2 the prisoner set is a Cantor set. 

into a single sector which includes the fixed point z = 0. We have here a 
snapshot of the splitting of the Julia set into a Cantor dust. If the innermost 
region, the "prisoner set", is resolved more finely it splits again into two or 
more pieces, as shown in Figure 19. 1 7  approaching a Cantor dust much as 
we observed in Section 19.2 for the picture of chaos restricted to an interval 
of the real line. 

19.6 Universality 

As interesting as the Mandelbrot and Julia sets are, they appear to have very 
little generality. After all, these sets were the result of studying one special 
equation, the logistic equation. The truly startling discovery that makes the 
study of chaos theory worthwhile and quite general is its structural stability. To 
explain this concept, I will present another iterative transformation of the 
type given by Equation ( 1 9.2) ,  also governed by some parameter akin to c. 

Even though the new transformation is likely to be quite different, if it 
resembles Equation ( 1 9.2) in even a small portion of the complex plane (by 
resembles we mean that it is a small perturbation of the original) ,  then its 
dynamics will be similar to the Mandelbrot map and it will produce Julia 
sets and Mandelbrot sets with a high degree of similarity to it. This similarity 
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does involve some rescaling, and also has some slight distortion, but it 
preserves all of the attributes of the Mandelbrot and Julia sets. Furthermore, it 
can be shown that, in general, Equation ( 19.2) is a close fit to most iterative 
functions in some region. Since problems of iteration arise in the study of 
the evolution of any system in science from astronomy to biology to 
economics, one begins to appreciate the importance of this work. 

The fact that all of this information and generality comes about from only 
three or four lines of computer code leads Douady and Hubbard to compare 
this with the extreme compression of biological information held by DNA, 
whose description requires several enormous treatises on biology. 

19.7 The Mandelbrot set Revisited 

The Mandelbrot set may be the most complex mathematical structure ever 
conceived yet it can be transformed by a Riemann mapping from a unit circle. 
Figure 19. 1 8  shows such a mapping. The angular positions of significant 
points of the Mandelbrot set correspond to positions on the original circle 
from which they were mapped. These positions are represented by fractional 
parts of 360 degrees. What makes these points significant is that they are 
either pinch points initiating discs of periodic orbits, branch points of dendritic 
structures, or ends of seahorse tails of the Mandelbrot set. Each value of c 
corresponding to one of these angles gives rise to a unusual Julia set image. 
The most prominent points are labeled by the ratio of small whole numbers. 
Observe that the most significant points tend to be rational numbers from the 
earlier rows of the Farey sequence shown in Table 14.2 between 0 and t .  
For example, the most significant points are found in row F3: 0, 1 ,  t . The 
numbers in Figure 19. 1 8, with the exception of i , are successive rational 
fractions from 0 to t of line Fs of the Farey sequence: 0, k , � , 7; ,  i , t , Z I Z Z J I Q · h F  h b 7 , 3 , 7 , 5 , 7 , 2 . nee agam, t e arey sequence as proven to e an 
indicator of significant occurrences, this time in the world of chaos and 
fractals. The point labeled F for Feigenbaum is the accumulation point for 
the period doubling bifurcations of the logistic equation (see Section 1 7.2) .  
Its value is  c = -1 .401 1 .  . . .  It has as its external angle the Morse-Thue 
constant 0.01 101001 100101 10  . . . = 0.4 12  . . .  whose binary representation is 
the Morse-Thue sequence (see Section 1 7.5) .  
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Figure 19.18 External angles for the Mandelbrot set. The fractions determine the period lengths 
of the iterates Zn for a given choice of the parameter c. The point "P' (Feigenbaum limit) marks 
the accumulation point of the period-doubling cascade. A Douady: Julia sets and the Mandel brat 
set. 

As was noted in Section 14.3, rational fractions between 1 and 1 of row 
Fs of Table 14.2 represent the frequencies and string lengths of the tones 
of the Just or natural scales [Ras] as well as the critcal points symmetrically 
placed on the other side of the Mandelbrot set. Now it can be seen that there 
is a connection between the Mandelbrot set and the musical scale. Both 
are based ultimately on multiplication by 2 ,  the Mandelbrot set by angle 
doublings of the shift map (see Section 1 7 .6) and the musical scale by 
octave relationships and harmonic series (see Chapter 3 ) . 

19.8 A Mandelbrot Set Crop Circle 

On August 1 2 , 1 991 , a schematic replica of the Mandelbrot set appeared 
overnight in a wheat field near Ickleton, 10  miles south of Cambridge (see 
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Figure 19.19 A Mandelbrot set on a wheat field near lckleton. An overlay shows buds 
labeled 2, 3, 4, and 4 at angular positions 1 80 degrees, 1 20 degrees, 90 degrees, and 60 degrees. 

Figure 19 . 19) .  While this shape was dearly recognizable as the Mandelbrot 
set, it lacked much of the fine detail and omitted the fractal structure on 
the boundary. This figure was accurately surveyed before it was harvested 
seven days later. It is one of many elaborate diagrams of mysterious origin that 
have appeared upon the landscape of England known as crop circles. 

When analyzing the Mandelbrot crop circle, the astronomer, Gerald 
Hawkins, recognized that its principal part was the standard cardiod curve 
given by the polar coordinate equation: r = 2 (  1 - cos 0) with origin placed 
at the cusp and 0 measured counterclockwise from the axis through the 
cusp. The cardiod can also be created by rolling a moving circle of unit 
radius about a fixed circle of the same radius, referred to as the generating 
circle, and marking successive positions of one point on the circumference 
of the moving circle. 

Surrounding the cardiod are four circular buds labeled 4, 3 ,  2, and 1 at 
angular positions 1 80 degrees, 1 20 degrees, 90 degrees, and 60 degrees shown 
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Figure 1 9.20 Concentric circles define bud positions along the Mandelbrot set. A hexagon in 
the unit circle radiates lines through its vertices to the sites of the buds. 

in Figure 19. 19. Buds 1 ,  2, and 3 each have mates symmetrically placed on 
the other side of the Mandelbrot set. Bud 4 is a circle of radius 1 ,  the same 
radius as the generating circle. From experience with other crop geometries, 
Hawkins could see that the actual Mandelbrot set sits at the center of eight 
concentric circles with the first four circles intersecting the cardiod at 
buds 1 ,  2, 3 ,  and 4 as shown in Figure 19.20. This geometry also holds 
for the crop pattern. The radial distances from the cusp of the cardiod to 
buds 4, 3 ,  2 ,  and 1 are 4, 3 ,  2 ,  and 1 respectively corresponding to the 
tones C in the 3rd octave, G, C in the 2nd octave and C. Hawkins has 
found many other instances in which important lengths within crop circles 
correlate well with frequencies of the diatonic scale [Haw3] .  The iterative 
Mandelbrot set has a prominent node between buds 1 and 2. However, the 
distance to this node is not a tone from the diatonic scale, and the crop 
makers apparently chose not to include it. Also the bud between buds 3 
and 4 does not match a musical tone, and does not symmetrically match its 
mate in the crop pattern. 
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An examination of the crop circle shows that the orbits of whirled wheat 
finished with a single stalk at a node N located at r = t along the axis of 
the cardiod (see Figures 19 . 19 and 19.20). The radial distance from N to 
buds 2 and 4 are both f or E in the 2nd octave. 

If a hexagon is inscribed in the generating circle (unit circle) of 
Figure 19.20, the radii from the center to each vertex of the hexagon point in 
the direction of buds 1 ,  3 ,  and 4 and their opposites while the perpendicular 
line through the top and bottom edges of the hexagon intersects bud 2. So 
we see that while the point by point description of the Mandelbrot set derives 
from dynamical systems theory, the crop circle artists have called attention 
to the relationship of the Mandelbrot set to Euclidean geometry, a level of 
analysis previously neglected. This is a geometry that does not reveal itself 
if one is restricted to the iterative, computer generated model. 

19.9 Complexity 

A group of scientists at the Los Alamos Institute have been developing a 
new concept to explain how complex forms of life develop from simple 
rules and how the great amount of diversity that we observe in the world 
around us is organized around a small repertoire of dynamic principles. 
These ideas have also been explored by Stephen Wolfram in his book, 
A New Kind of Science [Wol] . This may lead to a new interpretation of 
evolution in which the law of natural selection is of secondary importance 
as compared to the nature of dynamic systems. 

The limited ways in which a dynamic system can unfold in time govern 
the patterns of growth that we see in the world. I have demonstrated that, 
although an infinite number of Julia sets are possible and that these 
depend on values of the parameter c, there are only several generic kinds 
of behavior that correspond to these possibilities: stable attractors, periodic 
orbits, dendritic structures, Cantor dusts, etc. Some of these principles for 
biological systems will be discussed in Chapter 24 as they apply to the 
growth of plants. According to Brian Goodwin [Goo} and Stuart Kauffmann 
[KauS 1 ,  2] , two spokesmen for a new area of study called complexity theory, 
genetic structure is of secondary importance as compared to the dynamic 
principles that guide the development of living things. They feel that genetics 
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merely sets the initial conditions of growth and development which then 
unfolds as a dynamical system within the constraints imposed by the 
environment. 

It is their hypothesis, backed by careful observation of biological systems 
and theoretical considerations, that living systems exist in a state between 
order and chaos which they refer to as the edge of chaos. Dynamic systems in 
the ordered regime are frozen or lifeless, like crystals, while such systems lack 
structural coherence when they are chaotic. However, the edge of chaos, as 
we saw for the Mandelbrot set, is rich in structure much as a tidal pool at 
the edge of land and sea is the source of great biodiversity. I t  is this edge 
of chaos that can be shown to have a fractal structure. 

In his book, Why the Leopard Changed his Spots [Goo) , Brian Goodwin 
presents a charming hypothesis as to why young animals of all species from 
fish to lion cubs to humans engage in play even when it seems dangerous. 
He suggests that play is a chaotic activity with highly structured rules as 
compared to the ordered behavior of more serious business. Through play, 
youngsters may be skirting the edge of chaos, and the rich environment at 
this edge enables them to learn new patterns of behavior which help them 
to adapt to changing situations in their lives. 

19. 1 0  Conclusion 

We have seen that the representations of chaos exhibited by Mandelbrot and 
Julia sets reduce to subtle properties of the real and complex numbers. In 
a sense these sets are number turned into geometry. It is the universality of 
the logistic map that makes this subject more than just a source of wondrous 
images and strikes to the heart of how nonlinear processes manifest 
themselves in the natural world. 



20 
The Golden Mean 

20.1 Introduction 

An asymmetrical division is needed in order 
to create the dynamics necessary for progression and extension 

from unity. The golden mean is the perfect division of unity. 

Robert Lawlor 

The golden mean has been encountered many times throughout this book: 
as the basis of 5-zonogons and the class of isozohohedra (Chapter 6); in Le 
Corbusier's system of proportions (Chapter 7 ) ;  in the intersection points of 
the hyperbolic Brunes star and a critical value for the gambler's ruin problem 
(Chapter 9); in the measurements within a class of megalithic stone circles 
related to the pentagram (Chapter 1 1  ); in the geometrical structure of 
the Mask panel of the Laurentian library (Chapter 10); as an example of a 
self-referential form (Chapter 13 ) ; in the class of noble numbers that arise 
in plant phyllotaxis (Chapter 14  ) ; and in the self-similar Fibonacci fractal 
tree (Chapter 1 8) . 

In this chapter and the next two I will focus on some numerical properties 
of the golden mean and mention a few geometrical properties. In the last two 
chapters I will explore the importance of the golden mean to describe the 
growth of plants, and other dynamical systems. 

20.2 Fibonacci Numbers and the Golden Mean 

Consider the F-sequence (see Section 7 .3 ) :  

1 ,  1 ,  2, 3 ,  5, 8 ,  13, . . . . (20. 1 )  

443 
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Any term of Sequence (20. 1 )  is the sum of the two preceding terms, which 
makes it a Fibonacci sequence. It just misses being a geometric sequence since 
the square of any number in the sequence is off by 1 from the product of 
the two numbers that brace it, e.g. , 

32 = 2 X 5 - 1 ,  52 = 3 X 8 + 1 ,  82 = 5 X 13  - 1 ,  etc. 

The F-series has many interesting properties, some of which will be 
explored in this chapter. Notice that in Figure 20. 1 the F -sequence results in 
hierarchical patterns of sequences within sequences. At each level, a link acts 
either as an element in an ongoing chain or as one of the initiators of a new 
chain (also see Section 1 8.6). It was seen in Section 7 .3 and Section 14.4. 13  
that the ratio of successive elements of the F-sequence, 

2 3 5 8 13 
T'  2' 3' s ' s· · · · (20.2)  

approaches the irrational number T = l+f = 1 .6 18  . . .  in a limiting sense. 
This number is known as the golden mean. The T-sequence, 

. . .  , 1, 1, 1, 't, 12 , 't3 , . . .  (20.3 ) 

is the only geometric series that is also a Fibonacci sequence just as the 
�Sequence ( 7.5 ) is the only geometric sequence that is also a Pell sequence. 
As a result the T-sequence has many additive properties such as, 

1 1 1 . . .  ' -z + - = 1, - + 1 = 't, 1 + 't = 'tz ' 't + 'tz = 't3 . . . .  
't 't 't (20.4) 

From the 2nd and 3rd of these expressions it can be seen that the sequence, 

1 � , 1 ,  't , 't 2 can be written in decimal notation as 

0.6 18  . . . , 1 ,  1 .6 1 8  . . . , 2.61 8  . . . .  

The last expression of Equation ( 20.4) states that T and i are two numbers 
whose sum and product are identical. 

Second in importance to the F-sequence is another Fibonacci sequence 
known as the Lucas sequence, 

1, 3, 4, 7, 1 1, 1 8, . . . .  (20.5 ) 
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Figure 20.1 An illustration of pattern, order, and hierarchy in Fibonacci growth. 

The ratio of successive terms of the Lucas sequence also approaches the 
golden mean in a limiting sense and it is also an approximate geometric 
sequence. The nth term of the Lucas sequence can be gotten from the from 
the (n - l }th and (n + l }th terms of the F-sequence ( 20. 1 )  as follows, 

(20.6) 

For example 3 = 1 + 2,  4 = 1 + 3 ,  7 = 2 + 5, . . . .  The Lucas sequence can also 
be obtained from the r-Sequence (20.3 ) in terms of its decimal values: 

1 .6 1 8. 0 ., 2.61 8. 0 . ,  4.235 . . .  , 6.853,. 0 . ,  1 1 .089. 0 ., 0 0 0 (20.7 )  

by rounding the terms in the sequence successively up then down. In 
Chapter 22, the Lucas sequence will be shown to play an important role in 
the theory of proportion, and in Chapter 23 it will be a key to describing the 
periodic cycles of the logistic equation at full-blown chaos. 

Volumes have been written about the fascinating properties of the 
F-sequence and r (cf. [Kap3] ,  [Hun], [Bic-H7] ). In addition, a journal entitled 
The Fibonacci Quarterly is devoted to articles pertaining to the golden mean. 
I will present a typical example of the F-sequence's entertaining properties 
[Adam1] .  
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First denote the nth terms of the F-sequence (20. 1 )  and the L-sequence 
(20.5a) by Fn and Ln respectively. Then, 

F4 = L2 = 3 ,  

Fs = L 2 x L4 = 3 x 7 = 2 1  , 

!)6 = L2 xL4 xL8 = 3x7x47 = 987 , 
(20.8) 

F32 = L2 x L4 xL8 xL16 = 3x7x47x2207 = 2 1 78309, etc. 

It is entirely in character with the many interrelated properties of the 
Fibonacci sequence and r that r-

2 equals the sum of the inverses of F4, Fs, 
Ft6• · . .  , i.e, 

-2 1 1 1 1 't = - + - + - + - + · · ·  
F4 Fs Ft6 F32 
1 1 1 1 

= - + - + - +  + · · · . 
3 7 987 2 1 78309 

(20.9) 

This sum is rapidly converging; the sum of the first three terms already agrees 
with r-2 to six decimal places, 0.381966. 

Because of the additive properties of r, it is an ideal number upon which 
to base a system of architectural proportion such as Le Corbusier did with his 
Modulor [Kap3] .  

20.3 Continued Fractions 

Perhaps the most profound property of the golden mean is that it is the "most 
irrational" number in the number system. To make sense of this statement, let 
us review the subject of continued fractions [Khi]. It follows from Sections 14.3 
and 14.4 that: 

( 1 )  Any number a can be expanded as a continued fraction, 

a =  [a0 ; a1 , az , a3 , . . .  ] 

1 1 1 
= ao +-----. . . .  

al + az + a3 

The expansion is finite if a is rational, infinite if a is irrational. 
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(2 )  By truncating the continued fraction at successive points in its develop­
ment, we obtain rational approximations to a, called its convergents , 

P1 Pz P3 
- , - , - , . . . .  
QI Qz Q3 

Each rational approximation, dk , is the best for denominators no larger 
than Qk. For example the convergents to the golden mean are given by 
Sequence (20.2) .  

(3) The convergents dk approach r by oscillating on either side of it on the 

number line, i.e., dk - a oscillates about 0 while I cik - a  I approaches 

0 as k � =. 
( 4) A measure of the approximation of dk to a is, 

(20. 10) 

In other words, the convergents of a corresponding to large values of 
the indices ak approximate a closely since I a - 3k I is small. 

(5) In Section 1 4.4. 13 it was seen that {- = [ 1 ,  1 ,  . . .  ] = [ 1 ] . Since all of the 
indices are 1 ,  as a result of Equation ( 20. 10) ,  its convergents are the 
poorest approximations to any irrational number on the number line. 
In fact, as described in Section 14.4. 14 each number from the class of 
noble numbers 

shares this property with the golden mean, which accounts for the 
occurrence of noble numbers in the study of plant phyllotaxis. For this 
reason, the golden mean is said to be the "most irrational" number. 

(6) The golden mean is unique in one other respect. It is the only irrational 
number for which no integer n with Qk < n < Qk+! ,  has the property 
that l i;nn -t l ,  approaches 0 closer than for n = Qk+ I · This signifies that 
the golden mean has no intermediate convergents. This property is also 
manifested in the dynamics underlying the growth of plants as will be 
seen in Section 24.3. 

http://aLa2.a3.---.On
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20.4 The Geometry of the Golden Mean 

Not only is the golden mean rich in number relationships, but it has an 
interesting geometry. The golden mean lies at the basis of the five Platonic 
solids that is the cornerstone of Greek geometry. The many instances in the 
natural world in which the golden mean arise, attest to the importance of 
these geometrical relationships. Some of the geometry of the golden mean 
is described in this section, leaving a more complete discussion to other 
books [Kap3] .  

20.4. 1 The golden rectangle 

To construct a golden rectangle, a rectangle with ratio of sides equal to l :r  
(see Figure 20.2 ) :  

( i )  Start with a unit square. 
( ii) Add the semi-length of a side to the length from a vertex to the midpoint 

of the opposite side. 

If a square is removed from a golden rectangle, another golden rectangle 
remains, indicating the self-similarity of the golden rectangle. This process of 
removing squares from golden rectangles can be repeated to obtain a series 
of "whirling squares" and one golden rectangle, in the manner shown in 
Figures 2 . 1 1 . A logarithmic spiral connects vertex points of the squares. 

r 
I 

L�--:::!::::::--­� !  ... .!.....--If _..,..J 
Figure 20.2 Construction of a golden rectangle using compass and straightedge. 
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20.4.2 The pentagon 

According to legend, the secret society of the Pythagoreans used the star 
pentagon shown in Figure 20.3 as their sacred symbol. Just as the octagon (see 
Figure 7.2) symbolized the sacred cut, the pentagon is naturally associated with 
the golden mean. The ratio of diameter to side of a pentagon is -r: 1 ,  and any 
pair of diagonals cut each other in the ratio 1 :  -r, the golden section. The decagon 
is also related to the golden mean since the ratio of radius to side is -r: l .  

I t  is well known that the fivefold-symmetry of the pentagon arises naturally 
in the world of living things, as illustrated in Figure 20.4. Another example 
of fivefold-symmetry in the world of living things is the star decagon, found 
to represent the cross-sectional profile of the DNA molecule, shown in 
Figure 20.5, where each vertex of the star represents one of the ten bases 
of DNA situated along one repeating segment of the double helix. In 
addition, the ratio of one of the periodic lengths of the ten bases of ,B-ONA, 
the most common form of DNA, to the diameter of the star decagon 
measures 34:20, which closely approximates r. 

20.4.3 Golden triangles 

If diagonals are added to a pentagon, as shown in Figure 20.6a, two species 
of golden triangles,  I and II , result. Figure 20.6b shows that if the base angle of 
triangle I is bisected, it subdivides the triangle into golden triangles I and II. 
This may be repeated, as shown in Figure 20.6c, to produce golden triangles 
at a variety of scales. This property of self similarity makes golden triangles 
the source of interesting designs such as "Elyse's Dragon" created by Elyse 
O'Grady shown in Figure 20.7a and some of which exhibit fivefold-symmetry, 
such as the one shown in Figure 20. 7b created by Eileen Domonkos. 

20.4.4 Golden diamonds 

A pair of golden triangles I or II can be combined to form the two golden 
diamonds shown in Figure 20.8a. If these golden diamonds are juxtaposed in 
such a way that the arrows of adjacent edges point in the same direction, 
they create a class of non-periodic Penrose tilings of the plane which have 
been used as simple models in the study of newly-discovered crystal forms 
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Figure 20.3 Star pentagons at decreasing scales. The edges of the star cut each other in the 
golden section l : r. 

Figure 20.4 Star pentagons form a starfish. 

known as quasicrystals (see Sections 6.8 and 25.2) .  A non-periodic tiling is 
a tiling that cannot be translated to a new position and superimposed upon 
itself as is possible with a regular lattice of points [Kap3]. Non-periodic 
tilings using golden diamonds are shown in Figures 20.6c and 20.8b and in 
Tony Robbin's quasicrstal tower shown in Figure 6.20. 
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Figure 20.5 Detafled computer-generated model of DNA seen from above. 

(a) 

c 

A IL....:....--._l_..a....� B  
(b) (c) 

Figure 20.6 (a) A pentagon subdivided into one type 1 and two type 2 golden triangles; 
(b) the base angle of a golden isosceles triangle of type 1 is bisected to form a type 1 and type 2 
golden triangle; (c) a pattern of "whirling" golden triangles with mirror symmetry formed by 
Penrose rhombuses. 
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(a) 

(b) 

Figure 20.7 Two designs created from golden triangles of type 1 and 2. (a) "Elyse's Dragon". 
(b) "Fivefold-Symmetry". 
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L7 
(a) 

(b) 

Figure 20.8 (a) Two Penrose rhombuses formed by combining two golden triangles of type 1 
and 2; (b) they are fitted together so that the arrows on their edges match to form a design with 
approximate five-fold symmetry. 

20.4.5 Brunes star 

Janusz Kapusta [Kapu] has discovered an intimate relationship between the 
Brunes star and the golden mean. Figure 20.9a shows the Brunes star siting 
atop ten squares in which circles have been inscribed (the tetractys) .  When 
the upward pointed triangle defined by the outer vertices of the squares is 
moved so that it is tangent to the circles, the vertex of this triangle intersects 
the width of the square containing the Brunes star in the golden section 
as shown in Figure 20.9b. This enables a pair of circles to be constructed with 
diameters in the golden mean proportion. Figure 20. 10 shows this pair of 
golden mean circles, in exploded view, to be the initiating circles of an 
infinite sequence of "kissing" (tangent) circles with negative integer powers of 
the golden mean for their diameters. Figure 20. 1 1  illustrates a new compass 
and straightedge construction of the golden mean based on the relationships 
within Figure 20.9. 
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(a) (b) 

Figure 20.9 (a) The Brunes star sitting atop ten squares with inscribed circles ( tetractys) .  
(b} The upwardly pointed triangle tangent to the inscribed circles define the golden section of 
the enveloping square of the Brunes star. 

20.5 Wythoff's Game 

My own interest in the fascinating world of Fibonacci numbers began as the 
result of playing Wythoffs game with my students at the New Jersey 
Institute of Technology [Kap1]. This game is played as follows: 

Begin with two stacks of tokens (pennies). A proper move is 
to remove any number of tokens from one stack or an equal 
number from both stacks. The winner is the person removing 
the last token. 

The winning strategy is based on Theorem 20.1 due to S. Beatty. 

Theorem 20.5 . 1 .  If � + t = 1 , where x and y are irrational numbers , then the 
sequences LxJ, L2xJ, L3xJ, . . .  and LyJ,  L2yJ, L3yJ, . . . together include every 
positive integer taken once (L J means "integer part of" for example, L3. I 4 J = 3 ) .  
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Figure 20.10 An infinite sequence of tangent circles with negative integer powers of the golden 
mean as diameters. 

For a proof, see [Coxl] .  Since "12 + � = 1  from Equation ( 20.4) ,  Beatty's 
theorem shows that LmJ, Lnf J exhausts all of the natural numbers with no 
repetitions, as n takes on the values n = 1 ,  2 ,  . . . . Table 20.1 shows results 
for n = 1 ,  2 ,  . . . ,6. Do you notice a pattern in these number pairs that enables 
you to continue the table without computation? These Beatty pairs are also 
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Figure 20. 1 1  A new compass and staightedge construction of the golden mean based on 
Figure 20.9. 

Table 20.1 Winning combination 
of Wythoff's game. 

n lnrJ LniJ 

2 
2 3 5 
3 4 7 
4 6 1 0  
5 8 1 3  
6 9 1 5  

winning combinations for Wythoffs game. At  any move a player can reduce 
the number of counters in each stack to one of the pairs of numbers in 
Table 20. 1 .  The player who does this at each tum is assured victory. 

This sequence fol lows a rather subtle pattern. The differences between 
the numbers in columns 2 and 3 of Table 20. 1 are: 

2 1 2 2 1 2 . . .  and 3 2 3 3 2 3 . . . .  
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(a) (b) 

Figure 20.1 2  (a) The board game "comer the lady" of Rufus P. Isaacs: The initial positions for 
the queen are shown in gray. The goal is to reach the lower left comer. (b) The safe squares for 
the lady are shown in dark shading. They are all those squares for which two opposing sides are 
pierced by one of two straight lines whose slopes equal the golden mean and its reciprocal. 

Although both of these sequences follow a similar pattern (with 2 and 1 
replaced by 1 and 0, respectively, in the first sequence and 3 and 2 replaced 
by 1 and 0 in the second sequence) :  

1 0 1 1 0 1 . . .  ( 20. 1 1 )  

it is difficult to discern any order from this sequence. Its significance as a 
sequence will be revealed in the next section, and in Section 25.4. It will 
be shown to be symbolic of a dynamical system in the chaotic regime. 

Another variation on Wythoff's game goes by the name "corner 
the lady". It works like this [Schr]: 

"Take a chessboard and place a queen anywhere on the top row 
or the rightmost column, (shown in gray in Figure 20. 1 2 ) .  Two 
players alternate moving the queen any number of squares either 
'west', 'southwest', or 'south'. The first person to reach the 
starred corner wins." 
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The queen's moves to the west or south correspond, of course, to taking 
tokens from either of the two piles in Wythoffs game, and the moves to 
the southwest correspond to taking on equal numbers of tokens from both 
piles. There are certain squares to which a player can move the queen so 
that, no matter what one's opponent does, the last move to the starred 
square wins. These "safe" squares, shown in black on Figure 20.2, are therefore 
squares whose coordinates correspond to the Beatty pairs: ( 1 ,  2 ) ,  (3, 5 ) ,  
(4, 7 ) ,  (6, 1 0 ) ,  (8, 13 ) ,  etc. 

Wythoffs game has stimulated a great deal of mathematical research. A 
comprehensive bibliography is found in [Stol]. In Section 24.4, it will be 
seen that the winning combinations of Wythoffs game are connected with 
the ordering of florets in plant phyllotaxis. In Section 25.2, the "comer the 
lady" version of Wythoffs game will be shown to be an aid to understanding 
the relationship of the golden mean to quasicrystals. 

20.6 A Fibonacci Number System 

Figure 20. 13a shows a tree graph depicting the growth of rabbits described 
by Fibonacci in Liber Abaci: 

Each month a mature pair of rabbits gives birth to a pair of 
rabbits of opposite sex. However, a newborn rabbit pair must 
wait two months before it matures. 

Compare the Fibonacci tree with the binary tree in Figure 20. 13b which 
represents the geometric sequence: 1 ,  2, 4, 8, 1 6, 32 ,  . . .  (see Table 1 4.3) .  

The branches in Figure 20. 13a are labeled in Figure 20. 14  in such a way 
that the branches representing the mature rabbits are labeled with a 1 ,  
while young rabbit branches get a 0. Therefore, a 1 is followed in the next 
generation by a 1 and a 0 while a 0 is followed only by a 1 .  In this way the 
tree can be continued indefinitely. 

The Fibonacci tree can be used to represent all of the positive integers 
in a kind of Fibonacci decimal system known as Zeckendorf notation. The 
method is similar to what was done in Section 14.3 . 1 3  to associate each 
element of the Farey tree with an integer. Begin at the root and follow the 
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( b )  

Figure 20.13 A tree pattern (a) from the Fibonacci series; and (b) from a geometric series. 

RABBIT TREE 

IQ) 0 

Figure 20.14 The branches of the Fibonacci tree are labeled with a 1 for mature rabbits and 0 
for young rabbits. This tree is the basis of a Fibonacci number system. 
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unique path to any element of the tree. The Zeckendorf representation of 
that number is given by the string of O's and 1 's along that unique path. For 
example, the number 13  is represented in this system by: 

13  = 101 10 .  

I f  each digit from right to  left i s  weighted according to the F-sequence, i.e., 
1, 2 ,  3, 5, 8, 13, . . .  , and the Fibonacci numbers corresponding to the digits 
represented by 1 's are added, successive numbers on the branches of the 
Fibonacci tree correspond to the integers, e.g., 101  = 3 + 1 = 4, 1 10 = 
3 + 2 = 5 ,  1 1 1  = 3 + 2 + 1 = 6, 1010 = 5 + 2 = 7, 1 1010 = 2 + 5 + 8 = 1 5  . . . .  
The integers from 1 to 1 9  are listed in Table 20.2, along with both their 
binary and Zeckendorf representations. 

Table 20.2 Binary and Fibonacci representations of number. 

16842 1 8532 1 

0 0 0 
1 1 1 1 

2 1 0  2 1 0  2 2 

3 1 1  1 1  3 

4 1 00 3 1 0 1  4 3 

5 1 0 1  1 1 1 0 5 2 

6 1 1 0 2 1 1 1  6 1 

7 1 1 1  1 1 0 1 0  7 4 

8 1 000 4 1 0 1 1 8 

9 1 00 1  1 1 1 0 1  9 3 

10  1 0 1 0  2 1 1 1 0 1 0  2 

1 1  1 0 1 1 1 1 1 1 1  1 1  1 

1 2  1 1 00 3 1 0 1 0 1  1 2  5 

13  1 1 0 1  1 1 0 1 1 0  13 2 

1 4  1 1 1 0  2 1 0 1 1 1  1 4  1 

1 5  1 1 1 1 1 1 10 1 0  1 5  4 

1 6  1 0000 5 1 1 0 1 1 1 6  1 

1 7  1 0001  1 1 10 1  1 7  3 

1 8  1 00 1 0  2 1 1 1 1 0 1 8  2 

1 9  1 00 1 1 1 1 1 1 1  1 9  
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Notice that the sequence makes up the last digit or 1 's column in the 
Zeckendorf representation. I refer to it as the rabbit sequence: 

101 10101 101 101 1 . . . . (20. 1 2a) 

This sequence was encountered in each column of Wythoff's sequence 
given by Sequence (20. 1 1 ) . This pattern of numbers also makes up the 2's 
column except that in place of a 1 ,  two 1 's appear. The pattern also appears 
in the 3's column with three 1 's replacing each 1 and two O's in place of 
each 0; in the 5 's column, five 1 's replace each 1 while three O's replace 
each 0. This pattern continues and follows a F-sequence. The corresponding 
sequence for the binary representation is: 

1010101010 . . . .  (20. 1 2b)  

The sequences of Fibonacci and binary representations are wound into spirals 
in Figure 20. 1 5a (Adamson's Rabbit Series Wheel) and Figure 20. 15b (Peitgen's 
binary fractal pattern [Pei-H]). The sequence ofO's and 1 's within each circle 
of Figure 20. 15a reproduces the sequence at each level of the Fibonacci 
or binary trees. In fact these wheels are identical to the trees. You can see 
that the Rabbit Sequence (20.12a) evolves as you go from circle to circle 
on the wheel. 

RABBIT WHEEL 

(a) (b) 

Figure 20. 15  (a) Adamson's Rabbit Series Wheel; (b) Binary decomposition. 
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ADAMSON'S WYTHOFF WHEEL 

Figure 20. 16 Adamson's Wythoff Wheel. Adjacent number pairs are safe combinations for 
Wythoff's game. 

Adamson's Wythoff Wheel, shown in Figure 20. 16, places decimal numbers 
sequentially around the Rabbit Sequence Wheel so that Zeckendorf notation 
for any number can be read from the sequence of 1 's and O's on a straight 
line extending from the number to the center of the wheel. The sequence 
of numbers intersected by this line are the numbers on the unique path 
from the starting number to the root in the Fibonacci tree in Figure 20. 14. 
For example, the line from 15  to the center of the wheel goes through 
1 1010, its Zeckendorf notation, while the path along the tree passes through 
1 ,  3 ,  5 ,  9, 1 5 .  
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20.7 Binary and Rabbit "Time Series" 

The sequence in the last column of Table 20.2 represents the column number 
in which a 0 from the preceding number changes to a 1 .  They are: 

Binary sequence: 1 2 1 3 1 2 14 12 13 1 2 1 5 1 2 1 . .  . .  

Zeckendorf sequence: 1 2 13 21413  2 15  2 1413  2 1 . .  . .  

( 20.13a) 

(20. 13b) 

Sequence (20. 10a) represents the winning moves for the Tower of Hanoi 
puzzle (see Section 15 .5) .  Sequence 20. 13b is the analogous sequence for 
the Zeckendorf system. These sequences have many number patterns. For 
example, the 1 's from the binary sequence follow each other after every 
2 spaces. In other words it is periodic. In the rabbit sequence the 1 's follow 
each other according to the sequence 232332 . . .  , which is the rabbit sequence 
if 2 is replaced by 0 and 3 is replaced by 1 .  While the Sequence (20. 13a) is 
periodic in each of its digits, Sequence ( 20. 13b) is almost periodic or 
quasiperiodic. You can check the comparable patterns within both sequences 
for the numbers 2, 3 ,  4, 5 .  

In  Section 1 5 .5 we were able to derive from Binary and Gray code the 
frequencies for the occurrence of the disk numbers in Sequence (20. 13a). 
A similar procedure can be carried out to predict the frequency of occurrence 
of each number of Sequence (20. 13b) as follows: 

(a) Consider the Zeckendorf expansion of a number. Begin at the left 
with 1 ,  and multiply by -r and round up to the next highest integer if 
1 follows 0 or 0 follows 1 ,  or round up and then add 1 if 1 follows 1 
(0 never follows 0 in Zeckendorf notation). This gives the cumulative 
frequency. For example, from decimal 1 5  equivalent to Zeckendorf, 
1 1010, we generate the third row of the following table, the cumulative 
frequency. These numbers: 1 ,  3 ,  5, 9, 1 5  are of the same genealogy in 
that they lead from 15  to the root 1 in Figure 20. 14  and as we observed 
from Adamson's Wythoff Wheel (see Figure 20. 1 6) .  

Magnitude 
Zeckendorf 
Cumulative 
Frequency 

5 
1 
1 
1 

4 3 2 1 
1 0 1 0 
3 5 9 1 5  
2 2 4 6 
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(b) Take differences between elements of row 3 to get the frequencies in 
row 4. Therefore, up to decimal l 5  there is one number of magnitude 5 ,  
two of magnitude 4, two 3's, four 2's and six 1 ' s  as you can check from 
Table 20.2. Notice that we have also found the frequencies of each 
number with the same genealogy as 1 5 ,  i.e., 1 ,  3 ,  5 ,  and 9. 

If Sequences (20. 13a) and (20. 13b) are considered to be the magnitudes 
of earthquakes occurring sequentially in time, then the small earthquakes 
occur with great frequency while the larger ones are less frequent. In fact, 
in the case of Sequence (20. 13a) the frequencies follow the exact power law 

where f is the relative number of occurrences of an earthquake of size n up 
to time N, e.g., up to the 1 6th term of Sequence (20. 13a), or N = 15 ,  one­
half of the earthquakes are of order 1 ,  one quarter are of order 2, an eighth are 
of order 3 ,  and 1� are of order 4, as you can verify. For the earthquakes in 
Sequence (20. 13b) up to N =  19, there are 8 of order 1 ,  5 of order 2, 3 of 
order 3 ,  2 of order 4 and 1 of order 5 ,  i.e., the numbers of earthquakes of 
a given order follow a Fibonacci sequence. But we have already shown in 
Section 20.2 that the F-sequence is almost a geometric sequence. As a result 
the earthquakes described by Sequence (20. 13b) also follow a power law in 
an asymptotic sense. In Figure 20. 1 7a the log to the base 2 of the frequency, N, 
of earthquakes is plotted against the size, S for Sequence (20. 13a). In 
Figure 20. 1 7b the earthquake size given by Sequence (20. 13a) is graphed on 
a time line. Notice the fractal nature of this graph where a large peak is 
surrounded by two smaller peaks at three different scales. Compare this 
with the corresponding graphs for actual earthquakes. The straight-line 
relationship indicates a power law distribution (see Figure 20. 18a). The time 
series of global temperature monitored by NASA since 1 865 is shown in 
Figure 20. 1 8b. The pattern of fast, slow, and intermediate range fluctuations 
indicates a signal known as one-over-f noise ( J noise). Compare this time 
series with the random, white-noise pattern shown in Figure 20. 18c. This 
pattern has no slow fluctuations, i.e., no large bumps. Because the frequencies 
satisfy power laws for the number sequence and for actual earthquakes, both 
exhibit self-similarity and their geometrical representations are fractals. This 
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2 3 4 5 
s Number ol 'Earthquakes' N of size S 

(a) 

4 6 8 
T 

10 12 14 16 

Magnitude of 'Earthquake' S at time T 
(b) 

Figure 20.1 7  (a) Logarithm of the number of Tower of Hanoi discs ("earthquakes") N of a 
given size S. The straight line indicates a power law relationship; (b) sequence of disc sizes 
moved in winning Towers of Hanoi combination exhibits a t spectrum. 

was found for the representation of coastlines in the last chapter. Many 
other mathematical models studied by Per Bak exhibit similar behavior 
[Bak1 , 2] .  

Instead of earthquakes, the variations in Sequences (20.13a) and (20. 13b) 
could be thought of as a number of jumps in the 1 2-tone musical scale, 
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Figure 20. 1 8  (a)  Distribution of earthquake magnitudes in the New Madrid zone in 
southeastern United States during the period 1 974- 1983, collected by Arch Johnston and 
Susan Nava of Memphis State University. The points show the number of earthquakes with 
magnitude larger than a given magnitude m. The straightline indicates a power law distribution 

of earthquakes. This simple law is known as the Gutenberg-Richter law; (b) global temperature 
monitored since 1865 (NASA). Note the pattern of fast, slow, and intermediate range 
fluctuations. This type of signal is known as one-over-f noise ( }  Noise), and is extremely 
common in nature; (c) for comparison, a "boring" random, white noise pattern is shown. This 
pattern has no slow fluctuations, i.e., no large bumps. 



Chapter 20 The Golden Mean 467 

either in an upwards or downwards direction. The resulting stochastic music 
could then be termed "binary music" corresponding to Sequence (20. 13a) or 
"golden music" corresponding to Sequence (20. 13b) .  These two kinds of 
music display rather different characters. Both of these musical types conform 
to power laws known as } noise which has been observed by Richard Voss 
to be inherent in the musical compositions of Mozart and Bach (cf. [Gard2] ,  
[Vos-CJ. The music i s  neither too random, as i t  would be if  i t  followed a 
spectrum of white noise (the jump at any given time step is determined by 
the roll of the dice with each jump equally likely} ,  nor too predictable as it 
would be if it followed a spectrum of the /z noise of Brownian motion (the 
next step is up or down one tone in the 1 2-tone scale from the previous, as 
determined by the flip of a coin) .  

20.8 More About the Rabbit Sequence 

The rabbit sequence can also be generated by beginning with 1 and 10  then 
adjoining successive numbers as follows: 

1 
10  

101 
10 1 10  

101 10101 
101 10101 101 10  

. . .  etc. 

Notice that this sequence appears at successive levels of the Fibonacci tree 
and spiral (see Figures 20. 14  and 20. 1 5a). Also, any term can be generated 
from its predecessor by replacing each 0 by 1 and each 1 by 10. In other 
words, referring to the Fibonacci tree, newborn is replaced in the next 
generation by mature, and mature is replaced by mature and newborn. If 
this substitution is performed on the entire rabbit sequence, the sequence 
reproduces itself ( it is self-referential} .  The following are some additional 
observations about this sequence: 

( i )  The number of 1 's and O's in this sequence are both F-sequences, 
and the ratio of 1 's to O's approaches 't as you traverse the sequence. 
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( ii )  The 1 's appear in the 1 ,  3 ,  4, 6, 8, 9, . . .  places in the sequence while 
the O's appear in the 2, 5, 7, 1 0, 13 ,  . . .  places, precisely the winning 
strategies for Wythoff's game (see Table 20. 1 ). Also notice the Wythoff 
pairs adjacent to each other along Adamson's Wythoff Wheel (see 
Figure 20. 1 6) .  The integers of the left column of the Wythoff sequence 
in Table 20. 1 are assigned to the 1 ' s boxes, while integers of the right 
column gets the O's. 

( ii i )  Underline any subsequence of the rabbit sequence, e.g, the subsequence 
10: 101 10101 101 10 . . . .  Notice that 10 follows the preceding 10  by the 
following number of places: 2 1 22 1 2 1 . .  . .  If 2 is replaced by 1 and 1 
by 0 the rabbit sequence is replicated, which shows that it is self-similar 
at every scale as would be expected for a fractal pattern. This holds for 
any subsequence of the rabbit sequence. 

( iv) In Figures 20. 15a and 20. 1 6  the inner circle has been divided so that 
the larger arc is {- X 360 degrees while the smaller arc is t\ X 
360 degrees, i.e., the circle is cut in the golden section (ratio of r: l ). 
The largest interval is labeled 1 and the smallest is labeled 0. The 
largest interval is then subdivided again by the golden section, and 
once again the largest intervals are labeled 1 while the smaller intervals 
are labeled 0. This is repeated at successive levels of the figure. Notice 
that the lengths of the vertical lines descending from any circle to the 
center follow the pattern of Sequence (20. 13b) in both the {- and ;2 
arcs and also the complete circle. 

20.9 Conclusion 

The golden mean generates numerical and geometrical patterns that pervade 
mathematics and the natural world. Wythoff's game is the key to applications 
of the golden mean to dynamical systems. In the next two chapters, Fibonacci 
sequence will be generalized to n-bonacci series and the golden mean will 
be generalized to a family of silver means revealing further properties of this 
remarkable sequence and number. 



2 1  
Generalizations of the Golden Mean - I 

2 1 . 1  Introduction 

Behind the wall, the gods play; they play with numbers, 
of which the universe is made up. 

Le Corbusier 

In this chapter and the next the golden mean is generalized in two ways 
with the help of Pascal's triangle. The generalizations have applications 
to dynamical systems and the theory of proportions. The first leads to 
tri -Fibonacci, tetra-Fibonacci, etc. sequences, referred to as n-bonacci 
sequences. The second leads to generalizations of the golden mean to a family 
of silver means. 

2 1 .2 Pascal's Triangle, Fibonacci and other n-bonacci Sequences 

Pascal's triangle is an array of numbers with many interesting mathematical 
properties. It has 1 's along two of its boundaries, and each number off the 
boundary is the sum of the two numbers bracing it from above. 

Notice that the geometric sequence, 1 ,  2, 4, 8, 16 ,  32, . . .  , is generated 
by the sum of the numbers in each row. On the other hand, the F -sequence 
is the sum of numbers along the diagonals: 1 ,  1 1 , 1 2, 1 3 1 ,  143 ,  156 1 ,  . . . .  

The numbers in Pascal's triangle relate to two problems concerning the 
arrangement of a row of pennies: 

( i) The rows of Pascal's triangle give the number of arrangements of n 
pennies in a row when there are no restrictions, the so-called binomial 

469 
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Table 21.1  Pascal's Triangle. 

Row sums 

2 
2 4 

3 3 8 
4 6 4 1 6  

5 1 0  10  5 32 
6 5 20 1 5  6 64 

Table 2 1.2 Binomial distribution of heads and tails. 

no zeros 

1 1 1  

1 zero 2 zeros 

01 1 001 
1 10 010 
101  100 

3 zeros 

000 

distribution. For example, three coins result in the binomial distribution: 
1 ,  3, 3, 1 ,  i.e. , 1 arrangement with 0 tails, 3 arrangements with 1 tail, 
3 with 2 tails, and 1 with 3 tails listed in Table 2 1 .2 where 1 = H, 
O = T. 

( ii) Find all the arrangements, heads and tails, of n coins in a row, with 
the constraint that no two adjacent tails are permitted. For example, 
with three coins the arrangements are: HHH, HHT, HTH, THH, 
THT. Thus the number of combinations of 3 coins with 0 tails, 1 tail, 
and 2 tails is 1 3 1  respectively, one of the Pascal-Fibonacci diagonal 
sequences given above. The other Pascal-Fibonacci diagonals are 
similarly related to the arrangements of 2 ,  3 ,  4, 5 ,  . . . coins. All of the 
possibilities are listed in the Zeckendorf system of Table 20.2 with H 
replacing 1 and T replacing 0. They are also listed in the Fibonacci tree 
of Figure 20. 14  reading up from the bottom of the tree, not counting 
the root. 
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2 1.3 n-Bonacci Numbers 

What if pennies are now arranged so that two but not three consecutive 
tails are permitted? For example, the seven arrangements for three pennies 
are HHH, HHT, HTH, THH, TTH, THT, HTT. The arrangements for 
1 ,  2, 3 ,  4, . . .  coins follow the tribonacci sequence: 

1 ,  1 ,  2, 4, 7, 13 ,  24, 44, 8 1 ,  149, 274, 504, . . . .  

In this series each number is the sum of the preceding three numbers and 
the ratio of successive numbers approaches 1 .8395 . . .  in a limiting sense. For 
example, �n = 1 .839. 

Now permit 1 ,  2, or 3 tails but not 4 consecutive tails. The number of 
arrangements can be found in the tetrabonacci sequence: 

1 ,  1 ,  2 ,  4, 8, 1 5 ,  29, 56, . . .  , 

in which each number is the sum of the preceding four numbers. The ratio 
of successive numbers approaches 1 .927 . . . .  

The infinite sequence of n-bonaccis are shown in Table 2 1 .3 .  
Notice that the initial numbers in each sequence are from the geometric 

sequence: 1 ,  2, 4, 8, 16, . . .  corresponding to the arrangements of pennies with 
no constraints. These series can be shown to be minimizing sequences for 
Huffman trees which arise in coding theory [Hor] . Blackmore and Kappraff 
[Bla-K] have discovered a fundamental role for n-bonacci series describing a 
class of energy minimizing, lattice and area preserving transformations on a 

! -Bonacci: 
2 -Bonacci: 
3 -Bonacci: 
4-Bonacci: 
5 -Bonacci: 
6-Bonacci: 

Doubling: 
(n = infinite) 

Table 2 1 .3 N-bonacci sequence. 

1 , 1 , 1 , 1 ,  1 , 1 , 1 ,  1 ,  1 , 1 , 1 , 1 , . . .  
1 ,  1 ,  2 ,  3 ,  5, 8, 13, 2 1 , 34, 55, 89, 144, . . .  
1 ,  1 ,  2 ,  4, 7 ,  13 ,  24, 44, 8 1 ,  149, 274, 504, . .  . 
1 ,  1 ,  2, 4, 8, 15, 29, 56, 108, 208, 401 , 773, . .  . 
1 ,  1 ,  2, 4, 8, 16, 3 1 ,  6 1 ,  1 20, 236, 464, 9 12 ,  . .  . 
1 ,  1 , 2, 4, 8, 1 6, 32,  63, 125, 248, 492, 976, . .  . 

1 ,  1 ,  2, 4, 8, 16, 32, 64, 1 28, 256, 5 1 2, 1024, . . .  
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torus. When the lattices are two-dimensional these are related to the growth 
of plants; when the lattices are n-dimensional they are related to n-bonacci 
numbers. These transformations will be described in the last two chapters. 

2 1 .4 n-Bonacci Distributions 

Adamson [Adam1 ]  has discovered an n-bonacci distribution Triangle in which 
the rows represent the number of coins while the columns represent the 
number of arrangements that have exactly n-adjacent tails (note that if 1 = H 
and 0 = T then 1 101001000 fits into the category with 3 tails) .  

Table 2 1 .4 is analogous to Pascal's triangle in that its rows give the 
n-bonacci distribution of coins in contrast to the binomial distribution 
specified by the rows of Pascal's triangle. The sum of the first two numbers of 
each row in Table 2 1 .4 gives the Fibonacci sequence, while the sum of the 
first three numbers gives the tribonacci sequence, the first four results in the 
tetrabonacci sequence, etc. As an example, row 4 specifies the number of 
arrangements of heads (H = 1 )  and tails {T = 0) with repeated bits for three 
pennies, e.g., 1 ,  4, 2 ,  1 ,  with the arrangements listed in Table 2 1 .5 .  

However, unlike Pascal's triangle in which each number is  computed 
recursively from the previous ones (e.g., add the two numbers above it from 
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Table 21 .5 n-bonacci distribution of coins. 

no zeros 

I l l  
1 zero 

01 1 ,  010 
1 10, 101 

2 zeros 

001 ,  100 

3 zeros 

000 

the preceding row), the n-Bonacci Distribution Triangle of T able 2 1 .5 has 
no known recursive definition. 

Notice that Pell's sequence, 1 ,  2, 5, 1 2, 29, . . . , which arose in Section 7 .4 
as the basis of Roman architecture is incrementally developed along the rows 
and columns. 

If the rows of Pascal's triangle are plotted on Cartesian coordinates, 
they reveal the familiar bilaterally symmetric curve peaked at its center, 
the bell-shaped curve of statistics. On the other hand, a similar curve for 
the columns of the n-bonacci Distribution Triangle reveals a skewed 
distribution such as the ones found in the blackbody radiation curves of physics. 

Although the n-bonacci Distribution Triangle differs from the blackbody 
curves in its details, might it be possible that the characteristic shapes of 
blackbody radiation curves and related skewed functions are due to exclusion 
principles (restrictions on the numbers of consecutive zeros) ?  The blackbody 
radiation curve, for example, is premised on the exclusion principle that only 
an integral number n of energy packets hv are permitted by Planck's equation, 

E = hnv, 

where energy E is a function of frequency v and h (Planck's constant) .  In 
electron shells, exclusion principles determine the structure and properties of 
atoms. In the most fundamental sense, perhaps all exclusion principles have a 
parent in coin toss outcomes (no 2 tails together, no 3 tails together, etc. ) ,  
these parameters being the extent to which the bits are prohibited from 
contact. 

The n-bonacci numbers appear in the representations of integers 
expressed in Gray code shown in Table 1 5 . 1 .  Notice that within each 
2n block of Table 1 5 . 1 ,  the number of integers with no two O's together is a 
Fibonacci number; the number with no three O's is a tribonacci number; no 
four O's is a tetrabonacci number, etc. 
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2 1 .5 A General Formula for Limiting Ratios of 

n-Bonacci Sequences 

Martin Gardner [Gard1]  has given the following formula for the limiting ratio 
of adjacent terms of the n-bonacci sequence, which I refer to as n -bonacci 
constants or bn: 

xn+l - 2xn + 1 = 0 .  ( 2 1 . 1 )  

Alternatively, the n-bonacci constants are the roots of the polynomials 

xn - xn-l _ xn-2 - · · · - x - 1 = 0 .  ( 2 1 .2 )  

Thus, for n = 2,  b2 = 1 .6 18  . . .  , a root of either, 

Likewise, for n = 3 ,  b3 = 1 .829 . . .  , b4 = 1 .927 . . .  , etc. with bn approaching 2 
as n approaches oo. 

N -bonacci constants form a sequence ranging from the golden mean, bz = 
1 .6 18, . . .  , to b� = 2, while the n-bonacci sequences range from the Fibonacci 
sequence to the geometric sequence with common ratio 2. Just as for the 
binary and Fibonacci (Zeckendorf) number systems, each n-bonacci sequence 
can be associated with a number system and a series of O's and 1 's in which 
the ratio of 1 's to O's equals the appropriate solution to Equation (21 . 1 ). They 
also possess time sequences analogous to Sequences (20. 10a) and (20. 10b). 

2 1 .6 Conclusion 

The Fibonacci sequence is merely the beginning of a rich set of relationships 
associated with the golden mean. Pascal's triangle, despite its deceptive 
simplicity, is the matrix of these relationships. n-Bonacci sequences have been 
shown to represent the result of a family of constrained coin distributions 
problems. In the next chapter Pascal's triangle will again play a role in 
generalizing the golden mean to a family of silver means. 



22 
Generalizations of the Golden Mean - II 

Our soul is composed of harmony, and harmony is never bred save 
in moments when the proportions of objects are seen or heard. 

Leonardo 

22. 1 Introduction 

The golden mean is one of a family of metallic means referred to as silver 
means. These numbers form a richly textured fabric of number patterns that 
have many physical applications (cf. [Spi], [Kap-A] ). In the last chapter, 
n-bonacci sequences and constants were introduced as generalizations of 
Fibonacci and r-sequences. Silver means enable Fibonacci and r-sequences 
to be generalized (see Equations (20. 1 )  through (20.5 ) )  in another way. As 
with the Fibonacci sequence, each generalized Fibonacci sequence is an 
approximate geometric sequence in the sense of Equation (20. 1 )  from which 
silver mean constants akin to the golden mean are derived. 

Just as for n-bonacci sequences, these generalizations can be derived 
from Pascal's triangle. A sequence of polynomials is derived from Pascal's 
triangle and shown to be related to regular star polygons from which are 
derived all of the numbers that play a role in the theory of proportions. The 
edge lengths of these star polygons are shown to have additive properties 
which is why they are useful for building systems of proportion. The heptagon 
has particularly interesting properties and is studied in detail. 

Finally, the family of silver mean constants will be shown to have self­
referential properties. In fact they can be considered to be generalizations 
of the imaginary number i. 

475 
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22.2 Golden and Silver Means from Pascal's Triangle 

Consider the left leaning ( \ )  diagonals in Pascal's triangle. 
Starting from the left in Table 22.2 the diagonals appear as columns 

in which each successive column is displaced, in a downward direction, 
from the previous column by two rows. The rows of T able 22.2 can be seen 
to be the diagonals of Pascal's triangle related to the Fibonacci sequence 
described in Section 2 1 .2 with the sum of the elements of Row n being 
the nth Fibonacci number. This table, referred to as the Fibonacci­
Pascal Triangle or FPT, is associated with the coefficients of a sequence of 
polynomials, F(n) ( the superscripts are the exponents of the polynomials) 
[Adaml] .  

n 2 T 
0 10 

1 1 

2 1 2 1 0 

3 13  2 '  
4 14 32 

5 1 5  43 
6 1 6 s4 
7 1 7  65 
8 1 8 76 

Table 22. 1 Pascal's Triangle. 

1 
1 1 2 

1 2 1 4 
1 3 3 1 8 

1 4 6 4 1 1 6  
5 10 1 0  5 1 3 2  

6 1 5  2 0  1 5  6 64 

Table 22.2 Fibonacci-Pascal Triangle. 

3 4 5 Sum 

X 
2 i +  1 
3 x3 + 2x 

10 5 x4 + 3i + 1  
3 1 8 x5 + 4x3 + 3x 
62 10 1 3  i + Sx4 + 6i + 1  

103 41 2 1  x7 + 6x5 + 10x3 + 4x1 
1 54 102 1 0 34 x8 + 7i + 15x4 + 10i + 1 



Chapter 22 Generalizations of the Golden Mean - II 4 77 

Each column in Table 22.2 begins with a 1. The numbers {not the 
exponents) are generated by the recursion relation: 

(n, k) = (n - 1 , k) + (n - 2, k - 1 )  (22. 1 )  

where (n, k )  denotes the number in the nth row and kth column. For 
example, (7 ,  3 )  = (6, 3 )  + (5 ,  2 )  or 10  = 6 + 4. Also, beginning with 1 and 
x, each Fibonacci polynomial F(n) is gotten by multiplying the previous 
one, F(n -1 ) by x and adding it to the one before it F(n - 2) ,  e.g., F(3) = 
xF(2)  + F( l )  or x3 + 2x = x(i + 1 )  + x. 

Letting x = 1 in the polynomials yields the Fibonacci sequence: 1 ,  1 ,  2 ,  
3 ,  5 ,  8, . . .  The ratios of successive numbers in this series converge to the 
solution to x - .l = 1 or the golden mean r which I shall also refer to as the X 
first silver mean of type 1 or SM 1 ( 1 ) . 

Letting x =  2 yields Pell's sequence (see Section 7.4): 1 ,  2, 5, 1 2, 29, 
70, . . .  (e.g., to get a number from this sequence, double the preceding 
term and add the one before it). The ratio of successive terms converges to 
the solution of x - .l = 2 or the number () = 1 + J2 = 2.414 213  . . .  , referred to X 
as the silver mean or more specifically as the 2nd silver mean of type 1 ,  
SM1 (2 ) .  

Letting x = 3 yields the sequence: 1 ,  3 ,  10 ,  33 ,  109, . . .  (e.g., to get a 
number from the sequence, triple the preceding term and add the one 
before it). The ratio of successive terms converges to the solution to x - .l = 3 X 
which is the 3rd Silver Mean of type 1 or SM1(3) .  

In general letting x = N, where N is either a positive or negative integer, 
leads to an approximate geometric sequence for which, 

and whose ratio of successive terms is SM1 (N) which satisfies the equation, 

1 x - - = N. (22.2) 
X 

By an approximate geometric sequence, I mean a sequence for which the 
square of a given term differs from the product of the next term and 
the preceding term by a constant integer, i.e., ak2 = ak _ 1  ak + l + c. In the 
case of the Fibonacci sequence, c = 1 (see Section 20.2)  while for Pelt's 
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sequence, c = 5 .  I refer to each of these sequences as a Generalized Fibonacci 
sequence or OF-sequence. Note that if x is a solution to Equation (22.2) 
then so is �1 , e.g., x = 1 .618 . . .  and 1 .6�L_ = -0.61 8  . . .  are both solutions 
to Equation (22.2) for N = 1 .  If Equation (22.2) is rewritten as: 

1 - = x - N, 
X 

we see that when N is positive, negative solutions x to Equation (22.2) 
have the same fractional parts as their inverses, whereas if N is negative, 
positive solutions x have the same fractional parts as their inverses. For 
example, if N = -2, x = 0.414 while .!. = 2.4 14. X 

Alternating the signs for the terms in the polynomials of Table 22.1 
generates the silver means constants of type 2 or SMz. I will continue to 
refer to these polynomials as F(n) unless this leads to confusion. For example, 
the polynomial F(5) corresponding to row 5 would be x5 - 4 x3 + 3x, and 
using x = 3 in row 5 yields 144, and the GF-series is: 1 ,  3 ,  8, 2 1 ,  55,  144, . . . .  
(The next term is gotten by tripling the previous term and subtracting the 
term before. )  The ratio of successive terms converges upon 2.6180339 . . .  = 
r2

, the SM2(3 ) constant. 
For negative silver means the GF-series is generated by, 

Xk + l = Nxk - Xk - b  
and the silver mean constants of type 2, SM2(N), satisfy, 

x + .!. = N. (22.3) 
X 

If x is a solution to this equation then so is l .  Table 22.3 summarizes the X 
properties of the two means. 

Table 22.3 Summary of the two silver means. 

SM1 (N): x - _!_ = N or i - Nx - 1 = 0  
X 

Example: N = 1 ,  then 
x =  1 .618 . . . and -0.61 8  . . .  
where 1 .61 8 - 0.618  = 1 

SM2 (N): x + _!_ = N or i - Nx + 1 = 0 
X 

Example: N = 3 
x = 2.618 . . .  and 0.382 . . .  
where 2.6 18  . . .  + 0.382 . . .  = 3 
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22.3 Lucas' Version of Pascal's Triangle 

Fibonacci and Lucas sequences are intimately connected as can be seen 
from Equation (20.6) . Adamson has discovered another variant of Pascal's 
triangle related to the Lucas sequence. In fact this Lucas-Pascal Triangle 
or LPT demonstrates that silver mean constants and sequences are part of 
an interrelated whole. Along with the FPT these tables are carriers of all 
of the significant properties of the silver means. 

To construct the LPT create a new "Pascal's triangle" with 1 's along 
one edge and 2's along the other as shown in Table 22.4. 

Table 22.4 A Generalized Pascal's Triangle. 

2 
2 1 

2 3 1 
2 5 4 1 

2 7 9 5 l 

As before each diagonal becomes a column of the LPT in which the 
elements in each successive column are displaced downwards by two rows. 
The exponents of the corresponding polynomials are sequenced as for the 
FPT. You will notice that the numbers in each row sum to the Lucas 
sequence and therefore I refer to the associated polynomials as Lucas 
polynomials L(n) .  

Beginning with 2 and x, a Lucas polynomial is  generated by the recursive 
formula: 

L(n) = x L(n - 1 )  + L(n - 2) ,  

for example L(3) = xL(2)  + L( l )  or x3 + 3x = x(i + 2)  + x. 
Setting x = 1 ,  2, 3, . . .  in the Lucas polynomials in Table 22.5 generates 

a set of Generalized Lucas sequences (GL-sequences) related to the SM1(N) 
constants. Setting x = 1, 2 ,  3, . . . in the polynomials with alternating signs, 
symbolized by L(n) , generates another set of GL-sequence related to the 
SMz(N) constants. Ratios of successive terms of these sequences converge 
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Table 22.5 Lucas-Pascal's Triangle . 

.!l. 2 3 4 Sum k 

0 2o 2 2 
1 1 1 1 X 

2 1 z 2o 3 i + 2  
3 1 3  31 4 x3 + 3x 
4 14  4z 2o 7 x4 + 4i + 2  
5 1 5  s' 5 1 1 1  x5 + Sx3 + Sx 
6 1 6 64 92 2o 1 8  i + 6x4 + 9i +  2 

7 1 7  75 143 i 29 x7 + 7x5 + 14x3 + 7x 

to their respective SM constants. The following are some properties of the 
Lucas-PT sequences: 

( la) The nth number from the Generalized Lucas (GL) sequence corre­
sponding to SM1 (N) is the sum of the (n - 1 )th and (n + l }th numbers 
from the corresponding generalized Fibonacci (GF) sequence, i.e., GLn = GFn - 1  + GFn + 1 as we showed in Equation ( 20.6) for Lucas and 
Fibonacci sequences. 

( lb) Corresponding to SMz(N), GLn = GFn + 1 - GFn - 1 · 
(2) Relationship between the GF and GL-sequences: Placing x = 1 ,  2, 3, . . .  

into the Fibonacci and Lucas polynomials yields the sets of GF and 
GL-sequences. 

Example: Setting x = 1 results in the F-sequence: 1 ,  1 ,  2, 3, 5, 8, 13, . . . , 
and the L-sequence: 1 ,  3 ,  4, 7, 1 1 ,  18 ,  29, . . . , related to SM1 ( 1 )  = r. If 
the terms of the L-sequence are divided by J5 and rounded up or 
down, the F-sequence results. 

Example: Let x = 2. This results in the OF-sequence: 1 ,  2, 5, 1 2, 29, 
70, . . .  and the GL-sequence: 2, 6, 14 ,  34, 82, . . .  where both sequences 
are related to SM1 (2) = 0. GL is also gotten from GF by using Property 
( la). If the terms of the GL-sequence are divided by J8 and rounded 
up or down, the OF-sequence results. 

�eral, if the terms of the Nth GL-sequence are divided by 
..JN �  + 4 ,  the OF-sequence corresponding to SM1 (N) results. For 
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SM2(N), the GF and GL-sequences are derived by letting x = N in the 
sequence of polynomials L(n) with alternating signs. If the terms of 
the GL-sequence are divided by J N 2 - 4 the GL-sequence results. 

Example: Place x = 3 into the sequences of Fibonacci and Lucas 
polynomials with alternating signs to get the OF-sequence: 1 ,  3, 8, 
2 1 ,  55 ,  . . .  and the GL-sequence: 3 ,  7, 1 8, 47, . . .  corresponding to the 
SMz(3).  Notice that GL is gotten from GF by applying Property ( lb). 
Dividing the GL-sequence by J32 - 4 = J5 and rounding up or 
down results in the OF-sequence. 

(3 ) The numbers from a Generalized Lucas sequence are the sequence of 
powers of the silver mean constants of type 1 and 2 corresponding to 
that sequence rounded either up or down. 

Example: Setting x = 1 in these polynomials yields the Lucas sequence: 
1 ,  3, 4, 7, 1 1 , 1 8, . . . .  This sequence is generated by taking the sequence 
of powers of the SM, ( l )  = r , i.e., the r-sequence, and alternately 
rounding up and down (see Equation (20.7 ) ) .  

Example: Setting x = 2 in the polynomials yields the GL-sequence: 
2, 6, 14, 34, 82, . . . . This sequence can be gotten from the GF-sequence: 
1 ,  2 ,  5 ,  12 ,  29, . . .  by applying Property ( la). These numbers are gener-
ated by taking powers of SM 1 ( 2) = 2.414 . . .  = (), i.e., the ()-sequence 
(see Equation (8.5 ) )  and alternately rounding up and down. 

Example: Letting x = 3 in i - 6x4 + 9i - 2 = 729 - 486 + 81 - 2  = 322. 
The Generalized Lucas sequence is: 3, 7, 18, 47, 1 23,  322, . . . . This 

sequence can be gotten from the GF-sequence corresponding to SMz{3 ):  
1 , 3 ,  8, 2 1 ,  55, 144, . . .  by applying Property ( l b). These numbers are 
generated by taking powers of SMz(3) = i = 2.618 . . .  and rounding up. 

22.4 Silver Mean Series 

According to Equation (22.2 ) and Figure 22. 1 ,  sM:(N) are solutions to the 
following equation, 

1 X 

N = 1 - x2 • (22.4a) 
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y 

1 · · · · · · · · · · ··············---·---··------------N 

1 2 · · - · - · - - · - - - · - · · · · · · · - - - - -----

X 

X 
Figure 22.1 The equation y = ---2 maps the inverse silver means of the first kind, SM 1 (N) 

1 l + x  to tJ ·  
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Expanding 1 _xx z in a geometric series, 

1 
- = x + x3 + x5 + x7 + · · · . 
N 

(22.4b) 

In other words, the odd inverse powers of the Nth silver means of the first 
kind, SM 1 (N), equals � . For example, 

1 = 't-1 + 't-3 + 't-5 + 't-7 + . . .  ' and 

where r and (J are the first and second SM1 respectively. 

(22.5a) 

(22.5b) 

Kapusta [Kapu] has found a sequence of circles with diameters that are 
odd inverse powers of the golden and silver means lying within a square and 
a half square as shown in Figure 22.2, a visual proof of Equations (22.5 ) . The 
circles within the square are tangent to the upward pointed triangle of the 
Brunes star (see Chapter 8 and Figures 20.9 and 20. 10) .  Adamson has 
discovered an amazing generalization of these series of inverse powers to 
series of inverse powers of both the Nth silver means of the first and second 
kinds. These are related to the generalized Lucas sequences expressed in 
Table 22.6. 

Notice that each column to the left of the line is the Generalized Lucas 
sequence corresponding to Nth silver mean (the SM values are listed in the 
last column of Table 22.6) where N is the number at the top of the column. 
For example, the rightmost of these columns in Table 22 .6a is the standard 
Lucas series corresponding to SM 1 ( 1 )  or the golden mean while the second 
column corresponds to SM1 (2)  or the silver mean. The inverses of these 
numbers equal the sum of a particular series of inverse powers of SMt (N). 
The inverse powers within each series are listed in the same row to the right 
of the line. 

The numbers to the right of the center-line are derived in as similar 
manner (not shown here) as Equation (22.4b) is derived from Equation (22.4a) 
[Adami) .  The sign refers to the sign of that term in the series. For example, 
the series of odd inverse powers in Equations (22.5a) and (22.5b) refer to 
the odd integers to the right of the line in row 1 of Table 22.6a and sum 
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1 2 

Figure 22.2 The sum of the odd inverse powers of SM 1 (N) sum to -fJ illustrated for SM 1 ( 1 )  = 

r and SM2(2) = 9. 

to 1 and t respectively. By the same token, the integers 3 and 6 in row 2 
of Table 22 .6a to the left of the line lead to the following pair of series, 

_!_ = 8-z _ 8-6 + 8-10 _ e-14 + . . . . 
6 

(22.6a) 

(22.6b) 
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Table 22.6a Sums and addition rules for SM1 (N) series. 

Generalized Lucas numbers Exponents and signs SMI (N) = e sinh-l.lf 
6 5 4 3 2 1 1 3 5 7 9 1 1 . . .  1 .  1 .6 18  . . .  = 'I"  

40 37  1 8  1 1  6 3 2 -6 1 0  -14 1 8  -22 . . .  2. 2 .4 14  . . .  = 8 
140 76 36 14  4 3 9 1 5  2 1  27 33 . . .  3 .  3 .30277 . . .  

322 1 19 34 7 4 -12  20 -28 36 -44 . . .  4. 4.2360 . . .  
393 82 1 1  5 1 5  25  35  45 55  . . .  5 .  5 . 1 925 . . .  

1 98 1 8  6 -18 30 -42 54 -66 . . .  6. 6. 16227 . . .  
29 7 2 1  3 5  49 63 77 .  . .  

Table 22.6b Sums and addition rules for SM2(N) series. 

Generalized Lucas numbers 

8 7 6 5 4 3 
47 33 23 1 4  7 2 

198 1 10 52  18  3 
527 194 47 4 

724 1 23 5 
322 6 

Exponents and signs 

-3 5 -7 9 -1 1 . . .  
-6 10 -14 18 -22 . . .  
-9 1 5  -2 1  27 -33 . . .  

- 1 2  20 -28 36 -44 . . .  
- 1 5  2 5  -35 45 -55 . . . 

-18  30  -42 54 66 . . .  

SMz(N) = e'inh-I.lf 

3. 2.618 . . .  = 'I"  2 

4. 3.73205 . . .  
5 .  4.791 28 . . .  
6. 5.828 . . .  
7 .  6.8541 . . .  
8. 7.8729 . . .  

The same holds for the integers in Table 22.6b except that the inverse of 
the integers are now the sums of inverse powers of SM2(N) where N is the 
number at the top of the column. For example, using integers 3 and 4 in 
row 1 ,  

1 - = 't-2 - 't-6 + 't-10 - 't-14 + . . .  
3 

, 

_!_ = o-z - o-3 + o-s - o-7 + ·  . . 
4 

(22.7a) 

(22.7b) 

where SM2(3) = i and SMz(4) = 2 + J3 = o. Notice that Equations (22.6a) 
and (22. 7a) are identical. 



486 Beyond Measure 

22.5 Regular Star Polygons 

There is an unexpected connection between the polynomials of T ables 22. 1 
and 22.3 , with alternating signs, and theories of proportion. Theories of 
proportion have their origins with star polygons such as those that were 
introduced in Figures 7.2 and 20.3 in connection with golden mean and 
the Roman systems of proportion [Kap9] , and Figure 3.4 with regard to the 
cyclic subgroups of the twelve tone musical scale. The important constants 
of these systems r and () are related to the diagonals of regular polygons. 

An n-gon is a geometric figure with n vertices connected by a cycle of 
edges as shown as shown in Figure 22.3 for three species of 7 -gons. If the 
succession of vertices are arranged equidistantly around a circle, and the 
mth vertex is connected in a clockwise direction, to the m + k vertex for 
m = 1 ,  2, 3 ,  . . .  , n, then the n-gon is said to be regular and symbolized by {t} . 
For the polygon {T} , referred to simply as a regular n-gon; each vertex is 
connected to the adjacent vertex. When k > 1 ,  the edges of the polygon 
self-intersect, and the polygon is referred to as a star n-gon. 

In Figure 22.3 the three distinct species of star heptagon are shown 
and labeled {f} where k indicates that a vertex is connected to the kth 
vertex distant from it in a clockwise direction (note the arrows). There are 
three additional star heptagons with retrograde directions. In Figure 22.4 
the six distinct species of Pf} figures are shown. Only en and Pff} are 
considered to be star 1 2 -gons since only these form connected cycles 
of edges. In fact, it can be shown in general that species of { f} form star 
n-gons only when n and k are relatively prime. In other words, they have no 
common factors, e.g., 1 2  and 5. Since all of the positive fractions, L ,  in m 
lowest terms with denominator no larger than n are represented on row Fn 
of the Farey sequence of T able 14.2, this row also lists all of the species of 
star polygons {f} where m � n. The Euler phi function tjJ(n) introduced in 
Appendix 14A tabulates the numbers relatively prime to n. Therefore since 
1 ,  5 ,  7, and 1 1  are relatively prime to 12 ,  tjJ( 12 )  = 4. It is also easy to see 
that 1/J(n) = n -1 when n is prime, e.g., tjJ(7 )  = 6. It can be shown that there 
exist exactly lj>�n) distinct star n-gons. 

The edges of star n-gons are the diagonals of the regular n-gons. By 
determining the lengths of the n - 3 diagonals of regular n-gons we are also 
determining the lengths of the edges of various species of star n-gons. 
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{fl= {7} G} 
(a) (b) (c) 

Figure 22.3 The three positively oriented star 7 -gons. 

{¥}= {1 2} 

(a) 

FH= {3} 

(d) 

{¥}= {6} 

(b) 

{¥} 
(e) 

{¥}= {4} 

(c) 

{¥}= {2} 

(f) 

Figure 22.4 The family of star polygons related to the 12 -gon. Note the small arrows indicating 
orientation. 
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Furthermore, when all polygons are normalized to radius equal to one, the 
diagonals and edges of any m-gon reappear in n-gons whenever n is a 
multiple of m. For example, in Figures 22.4 the edges of the triangle, square 
and hexagon appear as diagonals of a regular 1 2  -gon. In this way we are 
able to determine all of the star m-gons related to an n-gon by considering 
all of the factors of n. For example, consider the 1 2 -gons. Its factor tree is, 

( 22.8) 

The edges of the triangle reappear as diagonals of the hexagon and the 
1 2 -gons. Also the edges of the square reappear within the 1 2 -gons. The 
factor 2 corresponds to the diameter { 1f} in Figure 22.4 and can be thought 
of as a polygon with two edges, referred to as a digon {2}. In some limiting 
sense a single vertex can be thought to be a polygon with a single edge of 
zero length {1}. Add up the total number of star polygons corresponding to 
these factors to get 

<1>(1) + <j>(2) + <j>(3) + <1>(4) + <1>(6) + <1>(12) = 1 2 .  

These are all the star polygons related to the 1 2-gons. In  addition to the 
single vertex and the digon, five of these have their edges oriented clockwise 
while five mirror images have retrograde edges. In Figure 22.3 we saw that 
q>( l )  + q>(7)  = 1 + 6 = 7 polygons were related to a regular heptagon ( including 
the case of a single vertex). In general n star polygons are related to any 
n-gon if the digon and the polygon with a single vertex are included. This 
follows from the property of numbers that, 

L.<l>(k) = n 

where summation is over all of the factors of n. 

22.6 The Relationship between Fibonacci and Lucas Polynomials and 
Regular Star Polygons 

Adamson and I have discovered a simple relationship between the roots of 
both the Fibonacci and Lucas polynomials with alternating signs and the 
diagonals of regular polygons when the radii of the polygons are taken to be 
I unit. As mentioned in the previous section, the diagonals can also be 
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Figure 22.5 Notation for the diagonals, dk = 2 sin"*- , of a polygon of unit radius. The edge 
is denoted by d1. 

considered to be edges of various species of star polygon related to regular 
n-gons. 

For odd n, the positive roots of the nth Lucas polynomial, L(n), with 
alternating signs equal the distinct diagonal lengths dk for k >  1 and edge d1 
of the n-gon of radius 1 unit where 

d 2 . k1t 
k = sm­

n 
n - 1  

for k =  1, 2, . . .  , -
2
- (22.9a) 

with the labeling of the n - 1 diagonals illustrated in Figure 22.5. 

Example 22.6. 1 .  For a pentagon, d1 and dz = r d1 where d1 
the roots of L(S ) :  

�1 + r 2 are r 

This gives the familiar result that the ratio of the diagonal to the edge of 
a regular pentagon is the golden mean r. 
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Example 22.6.2. For a heptagon, db dz = pd1 and d3 = ad1 where 

di = �pa - l  
pa 

are the roots of L(7) where p = 1 .8019377 . . .  and a =  2.2469796 . . .  : 

x7 - 7x5 + 14x3 - 7x = 0 .  

The numbers have additive properties much as the golden mean and this 
will be discussed in the next section. 

For even n, the positive roots of the (n - 1 )th Fibonacci polynomial with 
alternating signs F(n - 1 ) ,  equal the lengths dk of the distinct diagonals of 
regular n -gons of radius 1 unit where 

. kn dk = 2sm­
n 

n - 2 
for k =  1, 2, . . .  , -

2
- .  (22.9b) 

For polygons with even n, one of the diagonals is twice the radius or 2. This 
diagonal is not one of the roots. 

Example 22.6.3. For a hexagon, d1 and dz = J3 d1 where d1 = 1 are the 
roots of F(5) :  

5 3 x - 4x + 3x = 0 . 

Example 22.6.4. For an octagon, d1 ,  d2 = Je.Ji d1 and d3 = 8d1 where 

are the roots of F(7) :  

7 5 3 x - 6x + 1 Ox - 4x = 0 .  

The results for several polygons are summarized in Table 22.8. The 
diagonals are normalized to an edge value of 1 unit by dividing by d1 •  

We find the curious property that both the sum and product of the 
squares of the diagonals of an n-gon ( including the edge) equals an integer 



n-gon 

n 

3 

4 

5 

6 

7 

8 

10  

1 2  
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Table 22.7 Lengths of normalized diagonals of n-gons. 

dl 

.J3 
12 

s l/4 r-1/2 

� cr 

pt 
1 
t 

�2 - J3 

Lengths of normalized diagonals � 
� � � � £4 £4 £4 £4 

t 

J3 
p (J 

�e ./2 () 
s 'i4 1;'12 2 sl/4 r3/2 r 

�Z + J3  .J2�z + J3 .J3�z + .J3 Z +.J3  

and that this integer equals n for odd values of n. For example, d12 + dz 2 = 5 
and d12 x d22 = 5 for the pentagon, while, d12 + d/ + d32 = 7 and d1

2 x d22 x 
d3 2 == 7 for the heptagon. 

Not only are the diagonals of regular polygons determined by Equa­
tions (22.9a) and (22.9b) ,  but the areas A of the regular n-gons with unit 
radii are computed from the elegant formula, 

n . 21t A =  - sm- . 
2 n 

(22. 10) 

From Equation (22. 10) the square is found to have area 2 units while the 
1 2 -gon has area 3 units. It can also be determined that if n approaches 
infinity, then A approaches TC, the area of a unit circle. 

Notice that the key numbers in the systems of proportions based on 
various polygons present themselves in Table 22.7: ! - pentagonal system; 
() and J2 - octagonal; .J3, 1 + .J3, and 2 + .J3 - dodecahedral; p and CJ 
- heptagonal, and these are pictured in Figure 22.6. 
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Figure 22.6 The diagonals of a n-gon whose edge length equals 1 are key proportions of the 
system of proportions related to that polygon. 

22.7 The Relationship between Number and the 
Geometry of Polygons 

Since the unique diagonals of an n-gon correspond to the roots of a 
polynomial, the fact that these diagonals recur in any m-gon where n is a 
multiple of m serves to factor the polynomial into polynomials of smaller 
degree with integer coefficients. For example, the polynomial F(9) of the 
10-gon factors into the product of L(S ) of the 5 -gon and F(4), i.e., F(9) = 

L(S) X F(4) or, 

x9 - 8x7 + 21x5 - 20x3 + Sx = (x 4 - 3i + 1 )(x5 - 5x3 - Sx) . 

We can state this result as a theorem: 

Theorem 22.7. 1 .  The polynomial F(2n - 1 )  of any 2n-gon factors into the 
product of L(n) and F(n - 1  ) . 

By the same reasoning as for the 10-gon, the factor tree of Expres­
sion (22.8) can be used to factor F( l l ) , the polynomial representing the 
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1 2  -gon. Of the six unique diagonals of the 1 2  -gon, one occurs in the 3 -gon 
(equilateral triangle) ,  an additional one appears in the 6 -gon (hexagon) ,  
another appears in the 4 -gon {square) ,  and two additional diagonals 
occur in the 1 2 -gon. By Theorem 22. 1 ,  the polynomial of the 1 2 -gon 
factors into, 

F( l l ) = L(6) x F(5 )  

corresponding to the factoring by the hexagon polynomial F(S) . The hexagon 
polynomial can then be decomposed further as, 

F(5)  = L(3 ) x F(2) 

corresponding to factoring by the triangle L(3 ) .  These two factorizations 
can be combined to obtain, 

F( l l )  = L(3) x F(2) x L(6) 

or, 

1 1  9 7 5 3 ( 3 )( 2 )( 6 4 2 ) x - lOx + 36x - 56x + 35x - 6x= x - 3x x - 1 x - 6x + 9x - 2  . 

Finally L(6) factors into, 

2 ) 4 2 ) L( 6) = (x - 2 (x - 4x + 1 . 

The diagonal (edge) of the triangle comes from L(3 ), the additional diagonal 
(edge) of the hexagon from F(2) ,  the diagonal of the square is the root of 
the first factor of L(6) while the two additional diagonals of the 1 2 -gon 
are the roots of the second factor of L(6). Finally, the diagonal of the digon 
is the diameter of the 1 2 -gon. This accounts for the six distinct diagonals 
of the 1 2  -gon. 

In what follows the symbol dk will be used for diagonals of regular 
polygons normalized to a unit edge rather than the unit radius of the polygon 
with the hopes that this will not confuse the reader. For any n-gon, it is 
easy to determine from geometry that the length of the shortest diagonal 
when the edge has a length of one unit is given by the simple formula: 
2 cos1I . This leads to the solution of the classical problem of geometry and n 
to the generalization of the Vesica Pisces (see Appendix 6.A) presented in 
Appendix 22.A. 
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22.8 Additive Properties of the Diagonal Lengths 

Similar to 't' and 0, the diagonals of each of these systems of n-gons have 
additive properties. Steinbach has derived the following Diagonal Product 
Formula (DPF) that defines multiplication of the edge lengths in terms of 
their addition [Stein1 ,2] , 

h 
dhdk = _Ldk -h +Zi >  where h ::;  k 

i = O  
where the diagonals have been normalized to polygons with edges of d1  = 
1 unit. It is helpful to write these identities in an array as follows: 

d/ = 1 + d) ,  
d2i = dz + d4 , 
dzd4 = d3 + ds , 
dzi = d4 + d6 , 

d32 = 1 + d3 + d5 ,  
d3d4 = dz + d4 + d6 , 
d3ds = d3 + ds + d7 , 

d/ = 1 + d3 + ds + d7 , 
d4d5 = dz + d4 + d6 + ds , 

These formulas are applied to the pentagon and the heptagon. 

(22. 1 1 )  

Example 22.8. 1 .  For the pentagon, d2 = d3 = 't'and these relationships reduce 
to the single equation, 

Example 22.8.2. The proportional system based on the heptagon is 
particularly interesting [Steinbach 1 997], [Oga]. For the heptagon, d2 = d5 = p 
and d3 = d4 = a and these relationships reduce to the four equations, 

d/ = 1 + d3 
dzd3 = dz + d4 

d/ = l + d3 + ds 

or p2 = 1 + a, 
or pcr = p + cr ,  
or cr2 = 1 + cr + p .  

What is astounding is that not only are the products of the edge lengths 
expressible as sums but so are the quotients. Table 22.8 illustrates the 
quotient table for the heptagon. 
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Table 22.8 Ratio of diagonals ( left/top).  

p (] 

l + (]- (] a- p 

p p p - 1  
(] (] a- 1 1 

As a result of DPF and the quotient laws, Steinbach has discovered 
that the edge lengths of each polygon form an algebraic system closed under 
the operations of addition, subtraction, multiplication, and division. Such 
algebraic systems are known as fields and he refers to them as golden fields. 

22.9 The Heptagonal System 

The heptagonal system is particularly rich in algebraic and geometric 
relationships. The additive properties of DPF and Table 22.8 for the heptagon 
are summarized: 

p + a  = pcr, 
1 1 

- + - = 1 , 
P a 

p2 = 1 + cr, 
( . . 1 1 1 
Comparethts wtth � + � = 1 ) 

cr2 = 1 + p + a, 

f = p - 1 ,  
a 
a - = cr - 1 , 
p 
1 - = cr - p , 
a 
1 - = l + p - cr. 
p 

(22. 1 2 )  

The algebraic properties of each system of proportions are manifested 
within the segments of the n-pointed star (the n-gon with all of its diagonals) 
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Figure 22.7 The diagonals of a heptagon subdivide themselves into lengths related to the 
lengths of the two principal diagonals p and a. 

corresponding to that system. For example, the pentagonal system of 
proportions is determined by the 5-star shown in Figure 20.3 while the 
octagonal system is determined by the 8-star is shown in Figure 7.2 . 
Figure 22.7 illustrates the family of star heptagons. Notice that the short 
diagonal of length p (the edge is 1 unit) and the long diagonal of length 
CJ are subdivided into the following segments depending on p and cr: 

1 1 1 1 1 
p = - + - + -

2 + - + - and, 
p pcr cr pcr p 

1 p 1 1 1  p 1 ()' = - + - + - + - + - + - + - . 
cr cr2 cr2 pcr cr2 crz cr 
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Thus we see at the level of geometry that the graphic designer encounters 
the same rich set of relationships as does the mathematician at the level of 
symbols and algebra. 

The following pair of intertwining geometric a-sequences and corre­
sponding Fibonacci-like integer series exhibit these additive properties: 

1 p
1 2 2  3 3  4 . . .  , - , - ,  , p, a, ap, a  , a  p, a  , a  p, cr  , . . .  , 

cr cr 

1, 1, 1, 2, 3, 5, 6, 1 1, 1 4, 25, 3 1, . . . . 

The integer series is generated as follows: 

( 1 )  Determine the first five terms xyzuv beginning with 1 1 1 . 

(22. 1 3a) 

(22. 13b) 

(2) Let y + z = u and u + x = v, i .e. ,  1 + 1 = 2 and 2 + 1 = 3 to obtain 1 1 1 23 .  
( 3 )  Repeat step 2 beginning with the zuv, i.e., from 1 23 ,  2 + 3 = 5 and 

5 + 1 = 6 to obtain 1 2356. 
( 4) Continue. 

The ratio of successive terms of this sequence equals, alternatively p 
and * while the ratios of successive terms of the integer series asymptotically 
approaches p and � '  e.g., �� = 1 .785 . . .  "" p  while �� = 1 .24 "" � · Also a is 
obtained as the product of these ratios, i.e., i� = 2 .214 "" a. Just as every 
power of the golden mean 't' can be written as a linear combination of 1 and 
't' with the Fibonacci numbers as coefficients [Kap3] ,  every power of a can 
be written as the following linear combinations of 1 ,  p, a where the integers 
of Sequence (22. 13b) appear as the coefficients: 

cr = 1cr + Op + 0, 

cr2 = 1cr + 1p + 1 ,  

cr3 = 3cr + 2p + 1, 

cr4 = 6cr + 5p + 3, 

cr5 = 1 4cr + l lp + 6, 

cr6 = 3 1cr +  25p + 14, 

(22. 14)  

Notice that the first coefficient in the equation for an + 1 is the sum of the 
three coefficients of the equation for an while the second coefficient is the 
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I' 

IT :  I' s 

I' : IT s 

Figure 22.8 When a square is removed from rectangles of proportions 1 :p and 1 :a rectangles 
of proportion p:a in different orientations remain. 

sum of the first two coefficients and the last coefficient is the same as 
the first of the previous equation, e.g., in the equation for a4: 6 = 3 + 2 + 1 ,  
5 = 3 + 2 ,  and 3 = 3 .  

A geometric analogy to the golden mean can be seen by considering the 
pair of rectangles of proportions p:  1 and a: 1 in Figure 22.8. By removing 
a square from each, we are left in both cases with rectangles of proportion 
p:a although oriented differently. 

22. 10 Self-Referential Properties of the Silver Mean Constants 

In Section 14.4 it was seen that the solution to >a = a resulted in the 
infinite chain: 

a = >>>>· · · .  
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In fact all self-referential processes result in infinite processes. See Figure 1 8.9 
for the multiple reflections of an image in a painting of a painting of a 
painting or an image in a mirror in a mirror in a mirror . . . . 

In general the equation T(x) = x expresses a self-referential relationship. 
Replacing x by T(x) gives T(T(x) ) = x or TTx = x. Continuing this process 
results in, 

TTT . . .  Tx = x  

from which it follows that we can formally set, 

x = TTT . . .  , 

an infinite process. For example, in Section 1 4.5, T(x) = -1
• Setting x = X 

T(x) yields the formal solution, 

TIT . . .  = - 1 /- 1 /- 1 /- 1 /  . . . . 

Although this infinite compound fraction has no mathematical meaning, 
the infinite process can be defined to be the imaginary numbers ± i since 
these are the solutions to -1 = x .  X 

We also saw that the solutions to the liar's paradox in Section 1 3 .4, 
Xl = -x, where x is the truth value of a proposition, were the two infinite 
processes I and ] . 

We now come to a set of self-referential statements related to the SM1 
and SM2 constants. These constants are solutions to the self-referential 
equations T(x) = x where, 

T(x) = N + .!_ and T(x) = N _ ! .  
X X 

If N = 0 in the second of these transformations, TTT . . . is identified with 
the imaginary number i. So in a sense, the silver means are generalizations 
of i. The solutions x can be shown to be the two infinite processes, 

TIT . . .  = N + 1  and 

N + 1  

N + 1  

TIT . . . = N - 1  

N - 1  

N - 1  
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These are continued fraction representations of the silver mean con­
stants of types 1 and 2.  SM1 (N) = [N; N] in the notation of Section 1 4.4. 
SMz (N) = [N; N]- are expressed in terms of another form of continued 
fraction not discussed in this book. Adamson has found that the conver­
gents of, 

[i] = 1 and 

i + 1  

i + 1 

i + 1  

[i]- = 1 
i - 1  

i - 1  

i - 1  

are respectively, the repeating 1 2 -cycle: 

: 1 i 0 i - 1  0 - 1  - i  0 - i 1 0 
lzl : i ' o ' i ' 

- 1 ' 0' - 1 ' - i ' o ' - i ' T ' o ' T ' 

[I] · ! _
i
_ 

- 2  - 3i 
2_ � - 13 - 2li 

. 
i ' - 2 ' - 3i 

' 
5 ' 8i 

' 
- 13 ' - 2 li ' - 34 

. . . . 

and 

The first series is illustrated on the wheel shown in Figure 22.9. 
Notice that numerators and denominators at opposite positions on the 

wheel have different parities (signs) .  Also the modulus of adjacent terms 
equals ± 1 ,  e.g., 

. = (O x i) - ( (- l) x (-1)) = - 1 .  I 0 - 1 1 - 1  - z 

Figure 22.9 The convergents of the repeated continued 
fraction [i] forms Adamson's 1 2 -cycle wheel. 
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The second series follows the pattern of the Fibonacci sequence. It can also 
be shown, using DeMoivre's theorem, that 

[!] = ei11/6 = cos� + i sin� and therefore [i]1 2 = 1 .  
6 6 

This indicates that the powers of [1] lie at the vertices of a 1 2  -gon inscribed 
in a unit circle, i.e., they are what mathematicians call roots of unity (see 
Section 23.2) .  There is also a fascinating relation involving the imaginary 
number i and the golden mean r, 

(
. 
) 

1 . l't + - = z .  
(i't) 

In other words, according to Equation (22.3 ) , SMz(i) = ir = iSM1 ( 1 ). In a 
similar manner, it can be shown that each silver mean constant is related 
to an integer multiple of i. 

The self-referential character of the golden and silver means have been 
already described in previous chapters. For example, Figure 20. 1 shows the 
infinitely reproducible nature of the F -sequence. The sacred cut described 
in Chapter 6 is ultimately based on the silver mean 0. The harmony of the 
Roman system of proportions and the Amish quilt designs based, as they are 
on the sacred cut, were illustrated by the tiling of Figure 6.6, the Amish 
quilt tilings of Figure 6.5 and the Sacred Cut panel of the Laurentian 
Library shown in Figure 10.3 . 

22. 1 1  Conclusion 

With the aid of Pascal's triangle, the golden mean and Fibonacci sequences 
were generalized to a family of silver means. The Lucas sequence was then 
generalized with the aid of a close variant of the Pascal's triangle. These 
generalized golden means and generalized F - and L-sequences were shown 
to form a tightly knit family with many properties of number. Perhaps it is 
for this reason that they occur in many dynamical systems as we shall see 
in the final three chapters. The numerical properties of the silver mean 
constants are the result of their self-referential properties which, in tum, 
derive from their relationship to the imaginary number i. I have shown that 
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all systems of proportion are related to a set of polynomials derived from 
Pascal's triangle. These systems are related to both the edges of various 
species of regular star polygon and the diagonals of regular n-gons, and they 
share many of the additive properties of the golden mean. The heptagon 
was illustrated in detail. The next chapter will show how the edges of star 
polygons characterize the cycles of the logistic equation in a state of chaos. 

Appendix 22.A Generalizations of the Vesica Pisces 

Problem: Given an n-gon inscribed within circle C1 of radius Rl >  and 
a sequence of n identical circles Cz of radius Rz each of which intersect 
the center of cl and two adjacent vertices of the n-gon, find the ratio �� .  H.E. Huntley [ 1970] has stated and solved this problem for n = 5 {see 
Figure 22.Al ) . 

Let circle C2 have a unit radius. For 3 circles ( i.e. , n = 3 ) ,  the solution 
is the rosette pattern shown in Figure 10. 13a in which the equilateral 
triangle is marked on the circumference of the pitch circle by the three 
dotted lines and for which �� == 1 .  In Figure 22.Al ,  OA and therefore �� = 't for the case of five ci;cles ( i.e., n = 5 ) .  For the case of six circles 
(not shown) the circles intersect in the Vesica Pisces {see Appendix 6A) 
and �� = J3. Adamson has discovered the remarkably simple result that, 

R1 1t - = 2cos-
Rz n 

Figure 22.Al 
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for the n-circle problem where 2 cos� is the length of the shortest diagonal n 
of the n-gon when its edge length is 1 unit. The proof, using trigonometry, 
is left to the reader. The oblong regions between adjacent circles can be 
considered to be generalized vesicas. The values of ;� for n = 1 ,  2, 3 ,  . . .  , 1 2  
are the values �� listed in Table 22.7. For example, for the heptagon, ;� = p. 



23 
Polygons and Chaos 

23. 1 Introduction 

. . .  there is a God precisely because Nature itself, even in chaos, 
cannot proceed except in an orderly and regular manner. 

Immanuel Kant 

The previous chapter showed that the diagonals of regular polygons and 
edge lengths of regular star polygons are related to the roots of a family of 
polynomials derived from Fibonacci and Lucas sequences. This chapter will 
describe a remarkable connection between the edges of star polygons and 
dynamical systems in the state of chaos that I discovered in collaboration 
with Gary Adamson. A sequence of dynamical maps are derived from 
the Lucas polynomials. These maps exhibit periodic trajectories of all 
lengths with each regular polygon having its own characteristic cycle 
length. The first Lucas polynomial is the logistic equation, described in 
Chapter 19, at a value of its parameter corresponding to the extreme point 
of the Mandelbrot set. This leads to new connections between chaotic 
dynamics and both Euclidean geometry and the theory of numbers. If 
the polygons are viewed as tone circles much as the equal tempered scale 
can be looked at as a regular 1 2 -gon, then cycles can be considered to 
represent a sequence of tones. Two such tone sequences will be shown 
to be of musical interest. Additional mathematical details can be found 
in [Kapl3] .  

504 
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23.2 Edge Cycles of Star Polygons 

The proper framework for the study of the edges of star polygons are the 
roots of the simple polynomial, 

zn - 1 = 0 for z a complex number and n an odd integer. 

Certainly z = 1 is a root, but there are n - 1 additional roots, the so-called 
roots of unity. These roots exist in the complex plane. If the root z = 1 is 
excluded, the others are roots of the nth cyclotomic polynomial, 

zn - 1  -- = zn-l + zn-2 + · · · + z3 + z2 + z + l = 0 .  z- 1 
{23. 1 )  

The roots of this polynomial are complex numbers distributed at the vertices 
of a regular n-gon, that I refer to as a cyclotomic n-gon, whose center is the 
origin and whose radius is 1 where n is an odd integer. The vertices are at 
the points, (cos l�k , sin l�k ) given by DeMoivre's theorem, 

2rtk . . 2nk Zrrki/n .c k 0 1 2 3 1 cos-- + z sm- = exp tor = , , , , . . .  , n - . 
n n 

As an example, the cyclotomic 7 -gon is shown in Figure 23. 1 .  
Consider the cyclotomic 7 -gon to be a clock with 7 numbers (see 

Appendix 23A) proceeding counterclockwise from 0 = 7 o'clock situated at 
{ 1 ,  0) .  Next we consider the transformation, 

2rtk 
where Re z = cos-

7 
(23.2) 

where Re z signifies the real part of the complex number z. In this 
transformation, point 1 maps to point 2, i.e., 1 � 2. Similarly, 2 � 4, 4 � 8, 
etc. since the angle of a complex number doubles when the complex number 
is squared (see Section 19.3 ). But on this clock 8'oclock = 1 o'clock and 4 
= -3 and since we are only considering the real part of z, -3 = 3 .  In fact, 
for Transformation {23.2) ,  -k = k on any clock with n numbers for n odd. 
Therefore, this map exhibits a cycle of length three corresponding to 
k values: 

1 � 2 � 3 � 1 . (23.3 ) 
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Im 

( 1 ,0) Re 

Figure 23. 1  A cyclotomic 7 -gon with unit radius and vertices located at the roots of unity. 

In a similar manner, Transformation (23.3) will have its own characteristic 
cycle for every cyclotomic n-gon for n odd. The same cycle holds if the 
terms in Transformation 23.2 are doubled to yield, 

2 Re z H 2Re z2 . (23.4) 

Now consider 2Re z = 2 cos Z1tk for k =  1 ,  2, 3 ,  . . .  , and n odd. It can be n 
shown that for arbitrary k-values, there is a j-value such that 

21tk . 1tj 2 cos- = 2sm- for 4k + j = n .  
n 2n 

(23.5a) 

Recall from Section 22.5 that each star 2n-gon for 2n and j relatively 
prime ( i.e. , even values of j do not represent star 2n-gons) is represented by 
the symbol { 2F} for j > 0 and { 2�:i } for j < 0. The length of the edges (or 
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diagonals) of each of these star polygons were shown in Section 22.6 to be 
2 sin ;� units. Therefore twice the real part of the roots of the nth cyclotomic 
polynomial are edge lengths of the family of star polygons associated with 
the 2n-gon with unit radius. 

As a result, applying (23.5b) to Sequence ( 23.3 ) of k values, yields the 
sequence of j values and star 14-gon edges: 

3 � -1 � -s � 3  

and 

We now apply this result to chaos theory. 

23.3 The Relationship between Polygons and Chaos for the 
Cyclotomic 7 -gon 

(23.6a) 

(23 .6b) 

Consider the Lucas polynomials of Table 22.5 with alternating signs. It 
can be shown that the entire sequence of Lucas polynomials Lm(x) has the 
property, 

Lm (2cos e) = 2cos me. (23 .7 )  

As a result of this equation and Equation (23. 1 )  the Lucas polynomials map 
edges of star 2n-gons one to another. 

Notice that the polynomial Lz(x) = i - 2 ,  represents the logistic 
equation, described in Section 19.3, 

(23.8) 

when c is set equal to -2, i.e., 

X H x2 - 2 . (23.9) 

The notation of Equation (23.9) means that beginning with a seed value 
Xo and placing it in the equation maps it to the value xl > then x1 maps to 
Xz, etc., i.e., Xo � xl > Xt � Xz, Xz � x3, . . . . The sequence x0, x l >  x2 , . • .  is 
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referred to as the trajectory of the map. If Xn = XQ, the trajectory repeats and 
is said to be an n-cycle. 

As we saw, c == -2 corresponds to the extreme left-most point on the 
real axis of the Mandelbrot set (see Figure 19.5) .  This map is a transformed 
version of the logistic map, 

x � Ax(1 - x) for A == 4 (23. 1 1 )  

which has been studied in great detail (cf. [Pei], [Schr] ) .  The fact that 
c = -2 in Equation (23.9), means that this map is in a state of chaos. It can 
be shown that for values of 0 $ A $  4 (or - 2  � c $ %) all points on the unit 
interval are "imprisoned" in the sense that their trajectories remain in the 
unit interval [0, 1 ]  for Equation (23. 1 1 )  or for values of c corresponding to 
A. in Equation ( 1 1a), the trajectories remain on the interval [ -2A. ,1]. However, 
beginning at A =  4 (or c = -2) ,  orbits can escape; in fact the only imprisoned 
orbits lie on a Cantor set within the unit interval [0, 1 ] .  For any complex 
value of c, the boundary in the complex plane of the prisoner set is what 
is called the Julia set. Therefore, the Julia sets for real values t $ c $ - 2 are 
what we refer to as "Cantor dusts". 

The theory of dynamical system shows that as A is increased to the 
Feigenbaum limit 3 .569 . . .  the trajectories of the system go through period 
doubling bifurcations, i .e . ,  cycles of length 2n for n = 1 ,  2, 3 ,  . . .  (see 
Section 1 7 .2 ) .  At the value 3 .83 1 .  . .  a trajectory with a cycle of length 3 
appears, after which periods of every length are present according to the 
theorem of Sharkovskii. As a result of our analysis when A is further increased 
to a value of 4, or alternatively c is decreased to c = -2, the cycles can be 
characterized as edges of star 2n-gons for n odd in which each value of n 
has its own characteristic cycle length. Therefore, in a sense, the edges can 
be thought to dance about on the grains of a Cantor dust as I shall now 
demonstrate. 

23.4 Polygons and Chaos for the 7 -cyclotomic Polygon 

Take xo = 2cos 271t as the seed in the logistic map (23.9). As a result of 
Equation (23 .7 )  for m = 2,  Transformation (23.9) is identical to Trans­
formation (23.4) and yields identical results. We find that just as for 
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Transformation (23.4 ) ,  the iterates are the sequence of edge lengths of 
different species of star 14-gons corresponding to 2cos Z�k for, 

k = 1 ,  2, 4, 8, . . .  (mod 7 ) .  

Since 8 = 1 (mod 7)  the sequence repeats with the 3-cycle, 

or 

27t 47t 87t 
2cos7 = 1 .2469 . . .  � 2cos7 = - 0.44509 . . .  � 2cos7 

1 61t 
= - 1 .80189 . . .  � 2cos- = 1 .2469 . . . . 

7 

Appendix 23.A describes the system of modular arithmetic. 

(23 . 1 2 )  

As a result of the fact that cos Z1t(:- k) = cos 27k , values of the edge 
lengths corresponding to k and -k are identical. Therefore 4 = -3 (mod 7 )  
which corresponds in Sequence (23 . 1 2 )  to k = 3 ,  and so the 3-cycle is 
represented by the k-values 1 � 2 � 3 � 1 in Table 3 corresponding to 
the cycles of j -values: 3 � -1 � -5 � 3 which in turn correspond to the 
sequence of star 2n-gons: Pi} � ej} � Pi} � Pi} . 

If the vertices of the 1 4-gon are numbered from 0 to 1 3  then a sequence 
of edges can be associated with these star 2n-gons as shown in Figure 23.2. 
The cycle of edges extend from vertex number 0 of the 14-gon to the 
darkened vertices: 3 � 1 3  � 9 � 3 .  The orders of the edges in the cycles 
are also indicated in Table 3 ,  beginning with the seed i = 0 and in Figure 23.2 
by the boxed integers. Notice the regular skip pattern of highlighted vertices: 
4, 4, 6. This pattern holds for all cycles for which n is an odd prime number 
as proven in Appendix 23.B. Also note that for each edge cycle, its mirror 
image, illustrated in Figure 23.2 by open vertices within the 2n-gon, is also 
a cycle, i .e. , 1 1  � 1 � 5 � 1 1 . . .  is another 3 -cycle of edges for the 
cyclotomic 7 -gon. Each edge cycle of a cyclotomic n-gon will have a 
corresponding mirror image cycle. Finally, Adamson has discovered that 
the product of the cycle values equals -1 , e.g., 

( 1 .2469 . . .  ) (-0.44509 . . .  ) ( 1 .80189 . . .  ) = -1 ' 
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0 

1 1  

10  

7 

Figure 23.2 The edge-lengths from vertex 0 to vertex k (closed circles) of the star 14-gon, [I(] are elements of the 3 -cycle of the logistic equation related to the 14-gon. The number in 
the square boxes are the order of the points in the 3 -cycle. The open circles represent the edges 
of a mirror image 3 -cycle. 

and that the product of edges within any cycle will always equal ± 1 for the 
logistic equation, a result that can be proven from a dynamic/number 
theoretic description. 

The results of applying this procedure to the cyclotomic 1 1- and 
1 3 -gons are shown in Table 23.1 and Figure 23.3 . The cyclotomic 1 1 -gon 
results in a 5 -cycle of edges of the star 22 -gon family while the cyclotomic 
1 3 -gon results in a 6-cycle within a 26-gon. Once again, the edges of 
various species of star 22 and 26-gons are the line segments {not shown) 
drawn from vertex 0 to the vertex denoted by the appropriate darkened 
circle and with sequence numbers indicated by the boxed numerals. 
A second mirror image sequence is denoted by the open circles for the 
22 -gon. 
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Table 23.1 Cycles for the logistic equation corresponding to cyclotomic polygons. 

Cyclotomic 7 -gon 

k 

1 
2 
3 

2cos 2�k 
1 .24696 . . . 
0.44509 . . .  
1 .801 89 . . . 

Cyclotomic 1 1-gon 

K 2cos 21�k 
1 1 .68250 . . .  
2 0.83082 . . .  
3 -0.28462 . . .  
4 -1 .30972. . .  
5 -1 .91898 . . .  

Cyclotomic 1 3  -gon 

k 2 cos 21�k 
1 .77090 . . .  

2 1 . 1361 2  . . .  
3 0.24107 . . .  
4 -0.70920 . . .  
5 -1 .49702 . . .  
6 -1 .94 1 88 . . .  

2 sin .!'L 14 
3 

-1 
-5  

2 sin .!'L 22 
7 
3 

-1 
-5 
-9 

2 . 1tj sm26 

9 
5 
1 

-3 
-7 

- 1 1  

{11} or {�} 1 14+1 
3 

1 3  
9 

{ ll} or { _lL} 1 22+1 
7 
3 

2 1  
1 7  
13 

{�} or {�} 1 26+1 
9 
5 
1 

23 
1 9  
1 5  

Order i 

0 
1 
2 

Order I 

0 
1 
3 
2 
4 

Order i 

0 
1 
4 
2 
3 
4 

5 1 1  

The equal-tempered chromatic scale can be represented by a tone circle 
with 1 2  tones to the octave, or a 1 2 -gon with each tone equidistant from 
the next by a semitone. Since a 24-sided polygon can be thought of as 
a tone circle in which each tone represents the interval of a quarter-tone, 
the 5 - and 6-cycles of the cyclotomic 1 1 - and 13 -gon, along with their 
symmetric opposites can be viewed as tonal subsets of almost quarter-tone 
chromatic scales, one with tones slightly greater than quarter-tones and the 
other with tones slightly less. 
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(a) 

(b) 

Figure 23.3 The edge-lengths from vertex 0 to vertex k (closed circles) represent the (a) 
5 -cycle of the 22 -gon; and (b) the 6-cycle of the 26-gon. 
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23.5 Polygons and Chaos for Generalized Logistic Equations 

We have demonstrated that, for the cyclotomic 7 -gon, a sequence of selected 
edges of a regular 14-gon corresponds to a 3 -cycle of the logistic equation. 
We have gone further and shown that any cyclotomic n-gon for n-odd 
corresponds to one or more cycles of edge lengths of a 2n-gon and that each 
value of 2 cos Z�k for k = 1, 2, . . .  , n:zl for k relatively prime to n occurs in 
one of the cycles. As a result, an edge of a star 2n-gon maps to the edge 
of another star 2n-gon. 

Also, what we discovered for the second Lucas polynomial, holds true 
for all of the other Lucas polynomials from Table 22.5. For example, the 
third Lucas polynomial L3 with alternating signs leads to the recursive map, 

With m = 3, taking the seed xo = 2cos 2: for odd n, results in the sequence 
{2cos 2�k} where this time k =  1 ,  3, 9, 27, 8 1 ,  . . .  (mod n), i.e., 3k (mod n) 
for k = 0, 1 ,  2, 3 ,  . . .  , p - 1 .  The sequence is based on powers of 3 since we 
are using the 3rd Lucas polynomial. This generalizes to the mth Lucas 
polynomial Ln, with alternating signs in which case the iterates correspond 
to k-values that are powers of m. Presumably, these polynomial maps are 
also related to dynamical systems in a state of chaos. 

We have also proven that the cycle length corresponding to any 
cyclotomic n-gon for n prime or the power of a prime is equal to the 
smallest exponent p such that 

(23 . 13 )  
Where m is the index of the mth Lucas polynomial. Equation (23. 13 )  is a 
sufficient condition for a cycle for any odd n. However, each such case must 
be checked. Values of p are listed in Table 23.2 for values of n = 7, 9, 1 1 ,  13 ,  
1 7  and m = 2, 3 ,  4 ,  5 . 

From this table we see that the cyclotomic 7 -gon has a 3 -cycle for 
m = 2, 3 ,  4, and 5 as described above for m = 2. The 1 1-gon has a 5 -cycle 
for Lucas maps m = 2, 3 ,  4, and 5. The trajectory values correspond to 
2 cos 21�k for k = 1, 2, 3, 4, 5 = 1 12-1 and the results are shown in Figure 23.3 
for the case of m = 2. Notice that the 9 -gon has only a 3 -cycle corresponding 
to 2 cos Z�k for k = 1, 2, 4 = 9:z1 with k = 3 missing since 3 and 9 are not 
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Table 23.2 Exponents p such that (m2)P = l (mod n). 

2 n = 7 n = 9  n =  1 1  n =  1 3  n =  1 5  N =  1 7  m 

4 3 3 5 6 4 4 
9 3 5 3 8 

1 6  3 3 5 3 2 2 

25 3 3 5 2 8 

relatively prime as can be seen in Table 23.2. Note that the cyclotomic 1 7 -
gon has only a 4-cycle corresponding to 2cos 2�k 

for k =  1 ,  2, 4, 8, 1 6, . . .  
(mod 1 7 )  since 1 6  (mod 1 7 )  = -1 which is equivalent to k = 1 .  However 
there is a second 4-cycle corresponding to k = 3, 6, 1 2 ,  24, 48, . . .  (mod 1 7 )  
since 48 (mod 1 7 )  = -3 which is equivalent to k = 3 ,  the seed value of the 
trajectory. In general, the period corresponding to an odd valued cyclotomic 
n-gon for any generalized Lucas trajectory is a factor of the number of 
integers and relatively prime to n. Therefore since eight integers less than 
or equal to 8 are relatively prime to 1 7  ( i.e., 1 ,  2, 3 ,  4, 5 ,  6, 7 ,  8) ,  the cycle 
lengths can have values 2, 4, or 8 which are observed in Table 23.2. 

23.6 New Mandelbrot and Julia Sets 

Each of the Lucas polynomials has new "Mandelbrot" and "Julia" sets 
associated with it defined by the dynamical map: 

where Lm(c,z) is generated by the same recursion relation that generated 
the Lucas polynomials with alternating signs in Table 22.5, i.e., 

- c, x, x(x) + c = x2 + c, 
x(x2 + c) - x  = x3 + x(c - 1) ,  

x(x3 + x(c - 1) ) - (x2 + c) = x4 + (c - 2)x2 - c, etc. 

When c = -2 , these polynomials result in the Lucas polynomials with 
alternating signs. 
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Fig. 23.4 Generalized Mandelbrot set for m = 6. 

Fig. 23.5 A new Julia set for m =  3 and a value of c = 0. 1683 + 0.7543i. 

Figure 23.4 illustrates the new "Mandelbrot set" for m = 6 while 
Figure 23.5 shows one of the new Julia sets for m = 3 and a value of 
c = 0.1683 + 0.7543i. These were created by Javier Barrallo [Baro]. Additional 
generalized Mandelbrot and julia sets can be found on the cover of the 
book. 
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23.7 Chaos and Number 

There is an intimate relationship between chaos theory and number. We 
have shown that properties of number also lie at the basis of the polygon 
cycles. Let us once again consider the 2nd Lucas polynomial map. Ex­
panding � in the base 4 (the square of 2 ) ,  � = 0.02 102 1021. . .  = 0.021, a 
repeating decimal with a 3 -cycle. Likewise 1\ = 0. 0.01 1 3 1 expanded in 
base 4, a 5 -cycle (see Appendix 23.B). Our conjecture is that for n odd, 
l. expanded in base 4, has the identical cycle length as the cyclotomic n 
n-gons analyzed in the previous section. Furthermore, the identical cycle 
lengths occur for l. in base 9, 16 ,  25 or any base m2 as for the cycle lengths n 
of cyclotomic n-gons corresponding to the mth Lucas polynomial maps 
as shown in Table 23.2. The validity of this claim and other parts of this 
analysis were computer checked by Malcolm Lichtenstein [Lie]. 

23.8 Conclusion 

Many things have come together in this chapter. We have shown the close 
relationship between chaos and number. The well known theorem of 
Sharkovskii predicts that once a period 3 -cycle appears in a dynamical 
system, periods of all lengths occur. We have shown that at the critical 
point of the Mandelbrot set where orbits of the logistic equation begin to 
escape, each of these periods can be characterized by a sequence of edge 
lengths of a family of star 2n-gons for odd n. Coxeter has shown star 
polygons to be related to the two-dimensional projections of higher­
dimensional polyhedra or polytopes (see Figures 6.9e and 6. 19) [Cox3]. 
Geometry has shown itself once again to be the rich well-spring of 
mathematics. Rather than jettisoning these roots, the theory of dynamical 
systems and chaos has strongly embraced them. 

Each of these star polygons can be looked at as a tone circle with the 
cycles represented by tones from the "octave". In particular, the 5 -cycle 
from the 22 -gon and 6 -cycle of the 26-gon are promising candidates for 
new musical scales. After all, the chromatic scale was built from the circle 
of fifths related to the pff} star 1 2 -gon (Chapter 3 ) .  Star polygons were 
expressions of balance and symmetry in such sacred symbols as the Hindu 
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Sri Y antra and the Hebrew star of David (Chapter 3 ) ,  they were keys to 
Anne Macaulay's analysis of the Megalithic stone circles (Chapter 1 1 ) ,  the 
ancient Roman theory of proportions (Chapter 7 ) ,  Stan Tenen's enneagram 
diagram organizing the Hebrew letters (Chapter 12 ) ,  and some of Ben 
Nicholson's reconstructions of the Laurentian pavements (Chapter 10). 
Recent scientific developments have shown that certain supercooled gaseous 
condensates known as Bose-Einstein Condensates (BECs) form huge vortices 
that self-organize in polygonal forms [Col]. In the next chapter star polygons 
will be shown to be a structure underlying the growth of plants. 

Appendix 23.A 

Modular arithmetic can be thought to be a kind of "clock" arithmetic. For 
example, on the mod 1 2  clock, twelve numbers are equally spaced on the 
circumference of a circle as on an actual clock. The position on the clock 
at "noon" is given the value of 0. However, it can also be considered 
to have the value 1 2 , 24, 36, etc. We use the notation 0 = 1 2  = 24 = 36 
(mod 12 ) ,  etc. to signify the values on the clock corresponding to "noon". 
Similarly, 1 o'clock can also be thought of as 13 ,  25, 37 ,  . . . . Therefore 
1 = 13  (mod 12 ) ,  etc. Eleven o'clock can be taken to be 23, 35 ,  or -1  going 
counter-clockwise from 0, i .e . ,  - 1  = 1 1  = 23 (mod 1 2 ) .  The values 
0, 1 ,  2 ,  . . .  , 1 1  seen on the face of the clock are called its principal values. 

For any integer, n, its principal value can be determined as the remainder 
when n is divided by the clock value, e.g., 2 = 38 (mod 1 2) since 38, when 
divided by 1 2 ,  leaves a remainder of 2. Two numbers are defined to be 
equivalent to each other on the mod m clock whenever the numbers differ 
from each other by a multiple of m. For example, -3, 2, and 1 2  are all 
equivalent on a mod 5 clock since they differ from each other by multiples 
of 5 .  As a result of this equivalence, the integers on the mod m clock are 
partitioned into m different classes, with numbers in each class differing by 
multiples of m. As a result of its definition, mod is a symmetric relationship, 
i.e., if a =  b (mod m) then b = a  (mod m) . 

We can expand the notion of mod beyond integers and consider the 
equivalence classes of all real numbers. Any pair of numbers are considered 
to be in the same equivalence class if they differ by an integer. Clearly, the 
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integers are the class corresponding to 0. Each real number 0 � x < 1 is a 
representative of its own class. These can be considered to be the principal 
values of a mod 1 system. In other words, r (mod 1 )  is the fractional part 
of r when r is expressed as a decimal. 

Appendix 23.B 

Theorem 23.Bl If n is an odd prime number then the trace of the trajectory 
on the 2n-gon intercepts every fourth vertex and one spacing of 6 vertices. 

Proof. For n an odd prime number, successive vertices of the trace of the 
trajectory on the 2n-gon correspond to the k-values: 1 ,2 ,3 ,  . . . , n2I , 1 ,2 ,  . . . . 
Successive j values follow from Equation (23.5b), 

j = (-4k + n) mod 2n. 

The difference llj = ik + 1- ik of successive j values corresponding to successive 
values of Ilk is determined from, 

llj = -41lk mod 2n (23.B l )  

where llj refers to the principal value. From Equation ( 23. B 1 ) ,  llj = 4 for 
Ilk = -1 and llj = (6 - 2n) mod 2n = 6 for Ilk = n2l -1 = n23 • For example, 
referring to Table 23. 1  for an 1 1 -cyclotomic polynomial, the k-values and 
their corresponding j are, 

k: 1 ,  2, 3, 4, 5, 1 ,  2, . . . ; 
j: 7, 3 ,  -1 , -5, -9, 7 .  

which equals the following trace on the mod 22 clock, 

7, 3 ,  2 1 ,  1 7, 13 ,  7 .  

The spacings between these values are seen to be the sequence: 4, 4, 4, 4, 6. 

Appendix 23.C 

A decimal in base 10 can be written in any other base by the following 
procedure illustrated for converting � = 0.142857 in base 1 0  to the base 4. 
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1 .  Multiply the decimal in base 10 by  4 and record a 0 if the result is less 

than 1 ,  otherwise record the integer part. For example, 0.142857x 4 = 

0.57 148 . . .  so record a 0 as the 1st in the first decimal place. 
2. Multiply the result again by 4 to get 2.2857 142 . . .  and record a 2 as the 

2nd decimal place. 
3. Multiply the decimal part of the preceding number by 4 to get: 

1 . 1 428568 . . .  and record a 1 as the 3rd decimal place. 
4. Again multiply the decimal part of the preceding number by 4, but since 

the decimal part repeats we have the repeating decimal in base 4: 0.021 

In general, consider the rational fraction l = ao where ao is the decimal n 
expansion of l in base lO. lts decimal expansion in base m is then: O.b1b2b3 . . . n 
where bn = the integer part of: � _ 1  X 4 (mod 1 )  for n = 1 ,  2, 3 ,  . . .  (see 
Appendix 23.A for an explanation of mod 1 ) .  



24 
Growth of Plants: A Study in Number 

Who or What runs the Universe? Is there a plan behind the daisy, 
the hummingbird, the whale, the world? 

Guy Murchie 

24.1 Introduction 

Many scientists and keen observers of nature such as the the architect 
Le Corbusier and the composer Bela Bartok have observed the elaborate 
spiral patterns of stalks, or parastiches, as they are called, on the surface of 
pine cones, sunflowers, pineapples, and other plants. It was inevitable that 
the symmetry and order of plants so evident to the observer and so evocative 
of sentiment to the artist and poet should become a source of mathematical 
investigation. 

Irving Adler, a pioneer in modern theories of plant growth, has studied 
the history of this subject [Adl2]. Adler has traced the very general observa­
tions of the regular spacing of leaves as far back as Theophrastus (370 B.C.-
285 B.C.) and Pliny (25 A.D.-79 A.D. ) .  Leonardo Da Vinci ( 1452-15 19)  
observed the spiral patterns of plants, while Johannes Kepler ( 15 7 1-1630) 
conjectured that Fibonacci numbers were somehow involved in the struc­
ture and growth of plants. The first detailed study of the regular intervals 
at which leaves or florets are placed around the base of a plant was made 
by Schimper ( 1 836). He observed that after some number of complete turns 
around the stem of a plant, another leaf lies almost directly above the first. 
He gave the name divergence angle to the number of intervals divided by 
the number of leaves in the cycle. Schimper observed that this divergence 
angle was, generally, equal to the ratio of two Fibonacci numbers. The 

520 
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Bravais brothers ( 193 7 )  first discovered that the angle between successive 
stalks, the divergence angle, is in most plants �� radians or 13  7.5 degrees 
cf. {Uea1 ,2,3] , [Eri] , [Cox1 ] ,  where r = i+f ,  the golden mean. It was also 
recognized by P.G. T ait that plant stalks were arranged on logarithmic 
spirals. In a sense, the path curves of Lawrence Edwards (see Section 2. 7 
and Figure 2 . 18 )  can be thought of as generalizations of these spirals. 

When laid down with this angle, each stalk is an element of two or 
three logarithmic spirals, one from each of two or three sets, and the numbers 
of spirals in these sets are successive numbers from the Fibonacci series 
(F-series) 1 ,  1 ,  2, 3, 5, 8, . . . . This plant growth is often referred to as normal 
phyllotaxis. It has also been observed that in some plants the total number 
of spirals is composed of successive numbers of other Fibonacci series such 
as the Lucas series, 1 ,  3, 4, 7, 1 1 ,  . . .  , with correspondingly different divergence 
angles referred to as abnormal phyllotaxis. The observed angles all come from 
the class of noble numbers given in Section 14.4.14. The function of the 
golden mean is to space florets in such a manner that each floret has "the 
most room" [Mar-K] , and nature has chosen a hierarchy of ways in which 
to implement this demand of plants for space. 

This chapter will explore the relationship between number and phyllo­
taxis. The Farey series and continued fractions (see Section 14.4. 1 5 )  will be 
related to a hierarchy of phyllotaxis numbers. Three models of plant growth 
introduced by Coxeter [Cox1 ,2] , Van Iterson [Vani] and N. Rivier [NOL] 
will be described. Spacing properties of florets will be related to the golden 
mean. A simplified model of phyllotaxis, due to Adamson and Kappraff, 
will be described, showing the relationship of this subject to dynamical 
systems on a torus. 

To this day, the physical processes involved in phyllotaxis are a mystery. 
In this chapter we ignore physical processes, and give only fleeting reference 
to the geometry of plant growth, in order to underscore the number theoretic 
relationships that lie at the basis of this subject. 

24.2 Three Models of Plant Growth 

The stalks, or florets of a plant lie along two nearly orthogonal intersecting 
spirals, one clockwise and the other counterclockwise. The numbers of 
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Figure 24. 1 A sunflower exhibiting two sets of 
logarithmic spirals on its surface. 

counterclockwise and clockwise spirals on the surface of the plants are 
generally successive numbers from the F-sequence. These successive numbers 
are called the phyllota.xis numbers of the plant. For example, there are 55 
clockwise and 89 counterclockwise spirals lying on the surface of some 
sunflowers (see Figure 24. 1 ) ; thus sunflowers are said to exhibit 55 ,  
89 -phyllotaxis. On the other hand, p ineapples are examples of  5 ,  
8 -phyllotaxis ( although since 13  counterclockwise spirals are also evident 
on the surface of a pineapple ,  it is sometimes referred to as 5 ,  8 ,  
13 -phyllotaxis) .  Three equivalent phyllotaxis models will be described. 
Each makes use of the fact that florets are arranged so as to "have the most 
space". 

24.2. 1 Coxeter's model 

In Figure 24.2, H.S.M. Coxeter transforms the pineapple to a semi-infinite 
cylinder which has been opened up to form a period strip (meaning that the 
left and right sides of the rectangle are identified). Notice the three families 
of spirals. Also notice that the stalks are labeled chronologically, according 
to the order in which they appear in the growth process. The center of each 
stalk makes up a lattice of points which are successively numbered along 
another generative spiral. Each stalk is defined as the set of points nearer to 
that lattice point than any of the other centers, what in mathematics is 
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(a) (b) 

Figure 24.2 A pineapple transformed to a semi-infinite cylinder by H.S.M. Coxeter. 

known as a Dirichlet domain (D-Domain) .  In general, the Dirichlet domains 
of a lattice are hexagons, although at certain critical points they may be 
rectangles. Since the 5th, 8th, and 13th stalk (hexagon) border the initial 
stalk ( labeled 0) ,  this diagram represents 5, 8, 13 -phyllotaxis. In the most 
prevalent form of phyllotaxis, the center of each stalk occurs at an angle, 
A, =  2� radians or 13  7.5 degrees displaced from the preceding one where 

"t A. is the divergence angle. Other forms of phyllotaxis have been observed 
with anomalous angles related to other noble numbers as described in 
Section 14.4. 14. 

The lattice points also rise as if moving along a slightly inclined ramp 
by an amount called the pitch. If the pitch is less steep, then larger numbered 
stalks will border the initial stalk giving rise to larger phyllotaxis numbers. 
Notice that a sequence of stalks alternates on either side of the initial stalk 
numbered by Qk from the Fibonacci series. This is a consequence of the 
properties, described in ( 14.4. 13 ) ,  of the convergents �� ,  

1 2 3 5 
3 ' 5 ' 8 ' u ·· · ·  

of the continued fraction expansion of --t.  The next closest approach 
"t 

to the zero point occurs after the entire sequence has rotated Pk times 
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about the cylinder. This is the result of Property 6 of Section 20.3 that the 
continued fraction expansions of l and -\- have no intermediate convergents. 't 't 
For example, in Figure 24.2 ,  the 13th stalk occurs after 5 revolutions around 
the stem of the pineapple. Since QPk is the kth approximant to -\- in its k 't 
continued fraction expansion, it follows from Equation (20. 1 0) that stalk 
Qk occurs after Pk revolutions about the cylinder, and 

24.2.2 Van Iterson's model 

2n 
where ').. = z ·  

't ( 24. 1 )  

Van Iterson's cylindric model is similar Coxeter's model. However, it is easier 
to analyze. Van lterson (cf. [Vanl], [Pru-L] , [Adl2] ) uses tangent circles to 
model the florets as shown in Figure 24.3 for m, n-phyllotaxis. A clockwise 
spiral rises from the origin in increments of m florets while a counterclockwise 
spiral rises in increments of n florets, both spirals intersecting at the mnth 
floret. Also floret numbers m and n are both tangent to the initial floret 
labeled, 0. Figure 24.4 illustrates this for 2, 3 ,  5-, 3 ,  5-, 3 ,  5 ,  8-, and 5 ,  
8-phyllotaxis. Notice in Figure 24.4a that for for 2, 3 ,  5-phyllotaxis, floret 
number 2, 3, and 5 are tangent to the initial floret, 0. As the floret diameter 
d decreases, the lattice undergoes a transformation from one set of phyllotaxis 
numbers to another. As shown in Figure 24.4, and on the phyllotaxis tree 
of Figure 24.5 , 2, 3, 5-phyllotaxis is a transition point at which the 2, 
3-branch of the phyllotaxis tree bifurcates to 2 ,  5- and 3,  5-phyllotaxis. The 
divergence angles at general transition points, m, n, m + n-phyllotaxis are 
shown in Figure 24.5. At a transition point each circle is tangent to six 
circles in a dose-packed arrangement. Also angle y + 13 in Figure 24.4 
becomes 1 20 degrees, and a third spiral becomes evident as shown in Figures 
24.4a and 24.4c. 

Van lterson used his model to compute the pitch h, measured as the 
distance between any two successive lattice points, the divergence angle A., 
and the phyllotaxis numbers m,n. He then determined the relationship 
between these quantities, illustrated by the phyllotaxis tree in Figure 24.5. 
The positions of the vertices are slightly altered from Figure 14.2, and 
located at angles equal to numbers from the infinite Farey tree (see 
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Figure 24.3 An opposite parastichy triangle (as in Erickson [ 1983] ). The base is formed by 
the circumference of the cylinder. The sides are formed by the parastichies. 

b 

Figure 24.4 Patterns of tangent circles drawn on the surface of a cylinder as a function of 
circle diameter. 
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Figure 24.5 The vertical displacement h as a function of the divergence angle A. and for various 
phyllotactic patterns (m, n). 

Table 1 4. 1 )  between 0 and t multiplied by 360 degrees, i.e., angles between 
0 and 180 degrees. If m and n are interpreted as � then you will notice, in 
Figure 24.5 , that the phyllotaxis numbers are also arranged according to the 
Farey tree of T able 14. 1 ,  but with the numbering of its branches reordered. 
So we see that without the benefit of a geometric model, both the hierarchy 
of phyllotaxis numbers and the values of the divergence angles are represented 
by considerations of number only [Kap7]. 

Figures 24.5 and 14.2 also show that any pair of phyllotaxis numbers is 
consistent with a limited range of divergence angles, the angles between 
the transition points at both ends of the appropriate branch of the phyllotaxis 
tree. For example, in Figure 24.5, 2, 3-phyllotaxis is consistent with angles 
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between 1 28.5 degrees and 142. 1 degrees or, correspondingly in Figure 14.2, 
to angles between 1 20 degrees and 144 degrees Also the diameter of the 
floret circle d decreases for higher phyllotaxis angles. Furthermore h and d 
at the bifurcation points can be uniquely determined from the phyllotaxis 
numbers m,n by simple geometry [Pru-L]. 

Any relatively prime pair of integers can serve as phyllotaxis num­
bers, and all such possibilities are arranged in the Farey tree depicted in 
Figures 24.5 and 14.2. Each branch in Figure 24.5 corresponds to a pair of 
phyllotaxis angles gotten by zigzagging left-right or right-left down the 
tree from that branch according to the sequence LRLRLR . . .  or RLRLRL. . . . 
These phyllotaxis angles correspond to the noble numbers described in 
Section 14.4. 15 .  Further details are found in [Kap7]. 

24.2.3 Rivier model 

N. Rivier, et al. ( 1984) have developed a model of phyllotaxis on a circular 
disc. They define the stalks as the D-Domains of a sequence of computer­
generated growth centers given by the algorithm 

r(l) = aJi, e(l) = 2n'Al 

where r and (} are the polar coordinates of the disc, l labels individual 
cells, A, is the divergence angle, and "a" is the typical cell's linear dimension. 
Figure 24.6a shows the results of a growth process with divergence angle 
A =  g ,  a close Fibonacci approximation to � . Contrast its spider web 
appearance with the plant-like appearance of Figure 24.6b which has a 
divergence angle of A =  � . Thus, even close rational approximations to are � are not enough to properly space the florets of a plant, and so the 
morphology of plants is extremely sensitive to measurements. This goes 
against our common experience in which there can be no difference between 
rationals and irrationals since measurements are always in error and there 
is always a rational number arbitrarily close to any irrational. The dynamics 
of oscillating systems will be discussed in the next chapter, and they too 
will be shown to be governed by these subtle differences between rational 
and irrational numbers beyond the capability of measurement. 

Although most of the Dirichlet domains in Figure 24.6b are hexagons, 
there are concentric rings of D-domains with 5 or 7 sides. Rivier has 
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(a) 

(b) 

Figure 24.6 {a) A computer generated model of plant phyllotaxis with rational divergence 
angle A =  1t .  Note the spider web appearance; {b) irrational divergence angle A =  t .  Note the 
daisy-like appearance. 
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shown that as the radius of the disc increases it can accommodate a greater 
number of spirals and as a result the phyllotaxis numbers increase across the 
boundary. 

24.3 Optimal Spacing 

The question remains as to why divergence angles are related to the 
golden mean. Wherever numbers or other quantities are to be evenly 
distributed in space, the golden mean quite naturally makes its appearance 
(see Appendix 24.A) .  The following spacing theorem appears to lie at the 
basis of why the golden mean arises naturally in the growth of plants and 
other biological organisms. 

Theorem 24.3 . 1 .  Let x be any irrational number. If the points [x]f, [2x]f. 
[3x]f• · · · ·  [nx]f are placed on the line segment [O , I ] .  Then the n +  I resulting line 
segments have at most three different lengths . Moreover, [(n + I  )x]f will fall into 
one of the largest existing segments ( [  Jr means "fractional part of") .  

I t  turns out that segments of various lengths are created and destroyed 
in a first-in-first-out manner. Of course, some irrational numbers are better 
than others at spacing intervals evenly. For example, an irrational number 
that is near 0 or 1 will start out with many small intervals and 
one large one. The two numbers .!. and -t lead to the "most uniformly 't 't 
distributed" sequence among all numbers between 0 and 1 [Mar-K] . These 
numbers section the largest interval into the golden mean ratio r : l .  

Theorem 24.3 . 1  is illustrated in Figure 24. ?a  for a sequence of points [ � ]f 
for n = 1 to 10. This is equivalent to placing the points at angles, 2:Zn (mod 
2n) , for n = 1 to 10, around the periphery of a circle as shown in Figure 
24. 7b. The way in which the intervals, labeled 0 and 1 of the Fibonacci 
spiral in Figure 20. 15a, intersperse themselves, graphically illustrates this 
behavior. The implications of this spacing property will be explored further 
in the next section. 

If the center of mass of each stalk of a plant is projected onto the base 
of the period rectangle in the case of Coxeter's and Van lterson's models, 
or onto a circle in the case of Rivier's model then the next stalk divides the 
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Figure 24.7 (a) The points H-]1 for n = 1, 2, 3,  . . .  , 10 are evenly spaced on the unit interval; 
(b) the points -�2f' mod 2n are evenly spaced on the circumference of a circle. 

Figure 24.8 The cross section of a celery plant 
showing successive stalks evenly placed about the 
periphery. 

largest of the three intervals predicted by Theorem 24.3. 1  in the golden 
section. Any other divergence angle would place stalks too near the directions 
of other stalks, and therefore make the stalks less than optimally spaced. 
However, the divergence angle �� leads to the most uniformly distributed 
set of stalks. For example, the cross section of a celery plant is illustrated 
in Figure 24.8. The centers of mass of successive stalks are numbered. If the 
positions of these centers are projected onto a circle, they are found to 
closely match the points shown in Figure 24. 7b. We see that golden mean 
divergence angles ensure that successive stalks are inserted at positions on 
the surface of the plant "where they have the most room". 
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24.4 The Gears of Life 

In order to gain a clearer understanding of how a single number, the golden 
mean, operates as a coordinator of space in the natural world, consider 
a very much simplified mathematical model of plant phyllotaxis that 
nevertheless encompasses its essence. In this model the florets are projected 
onto a circle. Figure 24.9a shows a number wheel with the numbers 1 
through 5 placed on its rim. The numbers are arranged clockwise every 72 
deg., i.e., 3�0 degrees, beginning with 0 = 5 at the apex. In other words the 
angles around the circle are ordered by the numbers 0 through 5.  Begin at 
the order number 0 and progress clockwise two spaces, or 144 degrees, on 
the number wheel to reach order number 2 where floret number 1 is laid 
down, and clockwise two spaces repeatedly to 4, 1 ,  3 ,  and ending the cycle 
at 5 = 0 where floret numbers 2, 3 ,  4, and 5 are deposited. The sequence 
of moves is indicated by the star pentagon { f} . Notice that in order to 
complete a cycle of the five vertices of the star requires a rotation twice 
around the circle. So we have obtained Adamson's Primary Phyllotaxis 
Sequence (PPS) in the following order: 

Floret number y: 
Order number x: 

3 1 4 2 5 
1 2 3 4 5 

(24.2) 

The relationship of this wheel to Coxeter's phyllotaxis model in Figure 24.2 
is revealed when the floret number is graphed as the y-coordinate and the 
order number of the angle around the circle as the x-coordinate shown in 
Figure 24.9b with the floret number listed on the graph. 

Figure 24.9b should be visualized as a square in which the bottom 
and top sides have been identified, (meaning that when a point passes 
through the top edge of the square, it enters the bottom edge; top and 
bottom are considered to be identical) and the left and right sides have 
been identified. In other words Figure 24.9b represents a torus or rubber tire 
that has been cut open into a period rectangle (see Section 1 2.4 ). On a torus 
one can trace two distinct cycles shown by the two pairs of lines in Figure 
24.9b. If each interval on the x-axis corresponds to 3�0 = 72 degrees, then 
successive floret numbers are, counterclockwise from each other by an angle 
of ix 360 = 144 deg., which is an approximation to the phyllotaxis angle 
of 13 7.5 deg. A counterclockwise spiral making two turns on the surface of 
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& = 0  

(a) (b) 

Figure 24.9 (a) A number wheel with the numbers 1 through 5 on the rim. Beginning at 3 
and progressing counterclockwise successively 2 units results in Adamson's Primary Phyllotaxis 
Sequence (PPS) graph for five florets graphed on a period torus in (b). 

the torus is shown intersecting florets ( 1 ,  3, 5) on the first tum and ( 2, 4) 
on the second. A clockwise spiral intersects florets ( 1, 2 )  on the first tum 
and (3, 4, 5 )  on the second. Therefore, this pair of spirals corresponds to 
1 ,  1 -phyllotaxis. No consideration has been given to the pitch of the spiral 
so that this diagram merely shows the relative ordering of the florets, not 
their proximity to other florets as in Figure 24.2. 

The dynamics of this simplified model of plant phyllotaxis can also be 
represented by a pair of gears. One gear has two teeth while the other has 
five (see Section 14.5 . 1  and Appendix 14.C). The gear with five teeth must 
have a diameter � times the one with two teeth in order to accommodate 
the greater number of teeth. Five turns of the small gear in a clockwise 
direction results in two turns of the large gear in a counterclockwise direction. 
Musically, this is equivalent to two instruments playing with a rhythm in 
which two beats of one match five beats of the other. 

The same dynamics which we have described for a wheel with five 
numbers can be repeated for a wheel with any Fibonacci number of teeth, 
for example, the Primary Phyllotaxis Sequence for a wheel with 34 teeth. 
Begin at point 0 and move 13 spaces at which point floret number 1 is laid 
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down and then repeatedly progress 13 spaces to successively deposit all 
34 florets. One obtains Sequence ( 24.3 ) for a wheel with 34 spokes 
corresponding to the star polygon {ij}, the equivalent of Sequence (24.2) 
for a wheel with 5 spokes: 

2 1  8 29 1 6  3 25 1 1  32 19 6 27 14  1 24 9 30 1 7  4 25 1 2  33 
1 2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 16 17 18 19 20 2 1  

H L H L H L H 
20 7 28 1 5  2 25 10  3 1  1 8  5 26 1 3  34 = 0 
24 25 25 25 26 27 28 29 30 3 1  32 33 34 

L (24.3 ) 

The divergence angle between successive florets in a counterclockwise direc­
tion is now �� x 360 = 13  7.54 degrees, an even closer approximation to the 
phyllotaxis angle. 

The PPS graph on a period torus is shown in Figure 24. 10  with a counter­
clockwise spiral (solid line) making 1 3  turns on the surface of the torus 
and, on each successive turn, intersecting points: ( 1 ,  14, 27) ,  (6, 19, 32) ,  
. . .  , (4 ,  1 7 , 30) ,  (9 ,  22 ,  1 ) . A second clockwise spiral is shown approximating 
one that encircles the torus 8 times. The pair of spirals comprise a schematic 
diagram of 8 , 13  -phyllotaxis. As a warning to the reader, although Figure 
24. 1 0  is relatively correct, some of the coordinate points are slightly 
misplaced. 

Notice at the bottom of Figure 24. 10  can be found the same relative 
ordering of the points 1 ,  2, 3, 4, 5 that appears in Figure 24.9. In a similar 
manner, the same relative ordering for the diagrams corresponding to wheels 
with 8, 13 ,  and 2 1  numbers can be found in both Figure 24. 1 0  and Primary 
Phyllotaxis Sequence (24.3 ). These gears were also shown in Figure 14.5 to 
be a "kissing" sequence of Ford circles (see Section 14.5 . 1 ) .  This self­
similarity, inherent in the growth process, is a manifestation of the self­
similarity inherent in the golden mean. A corresponding wheel unrelated 
to the golden mean would result in an entirely different PPS diagram for 
each new wheel .  So long as �� l ies in the interval, [� ,  ��11 ] or 
[��11 , �� ] , then the stalks corresponding to the gear with Qk spokes will 
have the same qualitative ordering. This is an example of a phenomenon 
called mode locking, to be discussed in Section 25.6. 
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PRIMARY PHYLLOTAXIS SEQUENCE 

0 1 2 J 4 5 8  7 8 9 1 0 1 1 1 2 1 J 1 4 1 5 1 6 1 7 1 8 1 9 20 21 222J242526272829 JO J 1 J2 JJ J4 

Figure 24.10 The PPS graph on a period torus for 34 florets graphed on a period torus. The 
line drawn through the figure divides Gray code representations of floret number ending with 
1 from those ending with 0. 

Other interesting properties of the PPS sequence are: 

1.  The first 2 1  floret numbers of this sequence correspond to LnrJ while 
the last 13  numbers correspond to Lni J, the two classes of Wythoff 
pairs (see Table 20. 1 ) . 

ii. Proceeding from left to right, notice that the running high (H) 
and low (L) values of the floret numbers occur at order numbers 
corresponding to the Fibonacci numbers. This is a consequence of 
property 6 of Section 20.3 . 

iii. If the floret numbers are written in Zeckendorf notation ( see 
Section 20.5) ,  all of the LnrJ end in 1 while the Lni J end in 0, a 
fact that was also illustrated by the Wythoff Wheel of Figure 20. 13 .  For 
that matter, notice that identical sequences of digits in Zeckendorf 
notation are grouped together, another manifestation of self-similarity. 

file:///_ntj
file:///_nrj
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tv. The rabbit sequence (see Sequence ( 20. 1 2a) ) :  10 1 10101 101 1 . . .  is 
replicated by the last digit of the Zeckendorf notation of the floret 
sequence: 1 ,  2, 3, 4, . . . . We shall see in Section 25.4, that this sequence 
is indicative of chaos. 

v. The PPS sequence corresponds to a situation in which the positions of 
all 34 florets are projected onto the x-axis. The differences between 
adjacent floret numbers of this sequence are 13 2 1  13 13 2 1  13 . . .  , 
equivalent to the Rabbit Sequence (20. 1 2a). 

The relationship between the numbers of the PPS sequence is summarized 
on Adamson's Primary Phyllotaxis Wheel shown in Figure 24. 1 1 .  Here the 

ADAMSON'S PPS WHEEL 

0 

Figure 24. 1 1  Adamson's Primary Phyllotaxis Wheel. 
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numbers are arranged around a circle. The wheel is identical in structure to 
Figures 20. 1 2a and 20. 13 .  Notice in the outer circle the same distribution 
of integers as for the floret numbers of PPS (24.3 ). Also each successive 
floret is displaced from the next by the angle j! X 360 degrees in a clockwise 
direction, an approximation to the phyllotaxis angle of 13  7.5 degrees. 

Properties of this wheel are: 

i. The distribution of numbers around each circle is the most equitable. 
In fact, the wheel is a discrete replica of the distribution of the numbers 
2:Zn around the circle in Figure 24. 7b. 

n. The Fibonacci numbers descend the central radial line, alternating on 
either side of it, just as in the phyllotaxis lattice (see Figure 24.2) .  
Notice how each Fibonacci number originating in the outer circle 
descends to meet this central Fibonacci series. 

iii. Each circle contains the numbers of a PPS sequence alternating clockwise 
and clockwise, e.g. clockwise for 34-PPS and counterclockwise for 
2 1 -PPS, etc. 

iv. The depth of the lines radiating towards the center of the concentric 
circles follows the sequence of the Fibonacci counterpart of the Towers 
of Hanoi, Sequence (20. 13b). 

The phyllotaxis diagram in Figure 24.2 is the result of considering an 
infinite number of PPS series. The major difference between this figure and 
the discrete version of phyllotaxis is that section is that the phyllotaxis 
spirals are not periodic. Instead of a single spiral that encircles the torus 
with Fn turns, we now have Fn distinct spirals that encircle the torus but 
do not close up. The spirals are quasi-periodic. We shall see in Section 25.4 
that plant phyllotaxis is an example of chaos in the spatial rather than the 
time dimension. 

24.5 Conclusion 

Plant Phyllotaxis has been studied for more than one hundred years. It has 
stimulated research in biochemistry, botany, horticulture, and mathematics. 
It appears that plants apportion space so that each stalk has equal access to 
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light and other resources. In order to accomplish this task, plants exhibit 
an elaborate numerology. 

Without the hint of a physical mechanism, or even the artifice of a 
geometric model, the essentials of the growth process are still manifested 
through Farey series and continued fractions, Wythoffs game as depicted in 
Adamson's wheels, and the symbolic dynamics of the rabbit tree and 
sequence. 

Without even the concept of pitch or divergence angle, the Farey 
sequence reveals the relationship between these quantities in remarkable 
detail, and it even permits us to compute all possible divergence angles 
observed on actual plants. Without the concept of a lattice of florets, the 
primary phyllotaxis system (PPS) reveals the ordering of florets into spiral 
arrangements. We are led into a Platonic mode of thought in which the 
concepts of number, existing entirely within the mind, can be seen in the 
plant world. 

Decoupling phyllotaxis from science and geometry suggests that this 
numerical structure is universal and manifests itself in other biological 
processes and dynamical systems. For this reason, I have given the PPS the 
name "gears of life". Can a relationship between phyllotaxis and other 
biological processes be demonstrated? 

In the next chapter, the foundation of number characteristic of phyllo­
taxis will be seen in other dynamical systems. 

Appendix 24.A The Golden Mean and Optimal Spacing 

The ability of r to evenly distribute numbers can be seen by observing the 
first 103 decimal places of Adamson's Golden Ratio Phyllotaxis Constant 
(GRPC): 

.628407395 1 7406285 1 739528406395 1 7306284 1 7395 18406295 1 739 
628407395 1 74062841 739528406295 1 730628407395 184406 . . . 

A first glance might lead you to believe that the sequence .628407395 1 740 . . . 
is repetitious, but a closer examination of the number reveals a long-term, 
non-periodic structure with only local repetitions. Exhibiting the digits as 
follows reveals interesting Fibonacci properties: 
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Lengths of sequences beginning with "6": 

13 units 
13 
8 

13 
8 units 

13 
13 
8 

1 3  

Golden Ratio Phyllotaxis 
Constant arranged in "6" 
columns. 

Data at left - shows that up to 
the first 103 digits, the GRPC 
number can be grouped by 
Fibonacci number of sequences 
beginning with 6. 

This sequence follows the pattem of the rabbit sequence. As you can easily 
discover, a similar situation exists for each digit. 

How is GRPC computed? To some extent it is analogous to Wythoffs 
game (see Section 20.5 ) , except that the decimal part of multiples of � and 
-r12 are extracted instead of the integer parts. Multiply � = 0.6 1 8  . . .  
successively by the integers, discard the integer part and extract the first 
number after the decimal point. This yields the GRPC. For example, 1.?' = 

7.416  . . . . Therefore the 1 2th number in GRPC is 4. The complement of 
GRPC, 0.3 7 15926048, is generated by multiples of � . and GRPC and its 
complement sum to 1 .000 . . .  just as � and -r12 do. So�e properties of GRPC 
are: 

( 1 )  Differences between each digit are maximized: 4, 6, 4, 4, 4, 7, 4, 6 . . . . 

(2) The number is transcendental and has long-range aperiodicity. 
(3 ) It is easy to calculate any digit (unlike pi). 
( 4) It has a long range equitable distribution and frequency of each digit 0 

through 9: First 103 digits of the GRPC have 1 1  - O's, 10 - 1 's, 
1 0 - 2's, 1 0 - 3's, 1 1 - 4's, 10 - 5's, 10 - 6's, 1 1 - 7's, 10 - 8's 
and 10 - 9's. 



25 
Dynamical Systems 

A harmonious universe - like a harp. Rhythms of moon and tide. 
One single rhythm in planets, atoms, sea. 

Emesto Cardenal 

25. 1  Introduction 

Plants have a dynamic which transcends the details of each individual plant. 
In the past two decades a new branch of mathematics has arisen to study the 
manner in which a dynamical system evolves in time and space. This gives 
the mathematician and scientist an opportunity to penetrate the secret world 
of plants and other dynamical systems from the physical or biological world. 

This final chapter will introduce the reader to some of the ideas from this 
new discipline and its applications to the study of quasicrystals, plants, and 
a special problem of interest to physicists known as the Ising problem. I will 
pay special attention to the boundary between order and chaos. Once again, 
number plays a key role. 

25.2 Quasicrystals 

According to D.R. Nelson [Nel]. 

"In 1984 investigators working at the National Bureau of 
Standards found that a rapidly cooled sample of an aluminum­
manganese alloy, named Schectmanite after one of its 
discoverers, seemed to violate one of the oldest and most 

539 
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fundamental theorems of crystallography. Although the material 
appeared to have the same kind of order that is inherent in a 
crystal, it also appeared to be symmetrical in ways that are 
physically impossible for any crystalline substance [Sche]." 

Beams of x-rays directed at the material scattered, as if the substance 
were a crystal with fivefold symmetry, whereas the conventional wisdom of 
crystallography says that only two-, three-, four-, and six-fold symmetry can 
occur in crystals. Further investigations into the microstructure of this 
material have shown that it embodies a new kind of order, neither crystalline 
nor completely amorphous. Materials structured around this new kind of 
order seem to forge a link between conventional crystals and the materials 
called metallic glasses, which are solids formed when molten metals are 
frozen so rapidly that their constituent atoms have no time to form a 
crystalline lattice. The new materials have therefore been called quasicrystals 
(cf. [Kap3] ,  [Step-G)). 

The nonperiodic Penrose tilings with the two golden rhombic shapes, 
such as the one illustrated in Figure 20.8b, provides an excellent two­
dimensional model of how pentagonal symmetry can arise in x-ray patterns. 
Like Schechmanite, the Penrose tilings have both approximate fivefold 
symmetry and the long-range orientational order that is usually associated 
with conventional crystal lattices. 

The relationship between the rabbit Sequence (20. 1 2a) and quasicrystals 
can be illustrated by drawing a line with slope r through a square lattice with 
its origin at one point of the lattice, as shown in Figure 25 . 1 .  If lattice 
points closest to the line are projected onto the line, they subdivide the 
line into small and large intervals. If the large intervals are labeled " 1"  
and the small "0", then the sequence of large and small follows the rabbit 
Sequence 101 10101 1 . . . .  This result is equivalent to the sequencing of black 
squares in the game "corner the lady" (see Figure 20. 1 2) .  To construct a 
two-dimensional quasiperiodic lattice, Schroeder illustrates a region of a five­
dimensional cubic lattice projected onto an appropriately inclined plane in 
Figure 25.2. It is interesting to note that the points in this image correspond 
to the vertices of a non-periodic tiling of the plane by Penrose tiles. 
A three-dimensional quasiperiodic lattice can be generated similarly by 
projecting a six-dimensional cubic lattice onto three dimensions. 
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lattice. 
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tan n ""  lh = 1.618 

The one-dimensional quasicrystal obtained by projections from a square 

Figure 25.2 A two-dimensional quasicrystal, 
obtained by projections from a five-dimensional 
hypercubic lattice. 
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25.3 The Ising Problem 

25.3.1 The Ising model 

Chapter 1 7 presented the chaotic dynamics of a point moving through 
successive instants of time. It is not surprising that chaotic behavior can 
also be found entirely in the spatial dimension. Besides plant phyllotaxis, 
another simpler example of spatial quasiperiodicity and chaos is the one­
dimensional Ising spin model of magnetism [Schr]. The following is excerpted 
from Schroeder: 

"Imagine a one-dimensional system of electron spins, s; = + 1 
(spin up) and s; = -1 (spin down) , positioned at equal intervals 
along a single spatial dimension (e.g., a line) ,  as considered in 
[Bak-B]. In the presence of an external magnetic field H, the 
energy E of the system is given by 

E =  :LHs; + Lhs;sj 
i,.j ( 25 . 1 )  

where ];1 measures the anti-ferromagnetic interaction (];1 > 0) 
between spins s ; and s1 that decays with increasing spatial 
distance I i - j I according to the power law 

] I . . 1-a ij = l - J 
with a =  2 for example. 

The fact that ];1 is positive means that adjacent spins would 
like to have opposite sign (to minimize energy) .  This is why an 
interaction such as the one in Equation ( 25. 1 )  is said to be 
anti-ferromagnetic. (In a ferromagnet, adjacent spins tend to 
align themselves in the same direction, creating a strong external 
magnetic field, such as that of a horseshoe magnet. )" 

"Of course, with adjacent spins having opposite signs, spins at 
alternating locations have the same value, giving a positive 
though smaller contribution to the energy E (for H = 0). Thus, 
without an external field H, the minimum energy is obtained 
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by a fraction w = t of spins pointing up. Setting so = + 1 as an 
initial condition, we have 

Seven = +1 and Sodd = -1 , 

which is a perfectly periodic anti-ferromagnetic arrangement." 

25.3.2 The Devil's staircase for Ising spins 

What happens to the Ising spins when H is not zero? 
For nonzero values of the external field H, w = t may no longer give the 

minimum energy. In fact, for H � oo all spins would tum up, so that w the 
fraction of up-spins would go to 1 .  But how? 

For small changes of H (and zero temperature) ,  no spins will flip; they 
are locked into their given configuration. In fact, for each rational w = % , 

there is a range of H values, H(%) , for which w remains fixed, just as there 
was a range of divergence angles in Figure 24.5 for which the phyllotaxis 
numbers of a plant are fixed. As a result, the plot of w versus H looks like 
a 'devil's staircase' (see Figure 25.3) .  The staircase is 'complete' in that the 
rational plateaus in Figure 25.3 add up to the entire H interval. 

·I o.s 
g. 'a 0.6 

j 0.4 

0.2 ' i 

/ 

...... / 

o L---�--�--�----L----L---L--0 2 3 4 5 6 
Magnetic field H/J(l) 

(a) (b) 

Figure 25.3 (a) Fraction of up-spins as a fraction of magnetic field for an Ising spin glass 
exhibiting a devil's staircase; (b) the devil's staircase subdivided into six self-similar parts. 



544 Beyond Measure 

The (locked) plateau for w = t has a relative length of 0.44, leaving 
two lengths of 0.28 remaining for w =F- t .  Irrational values of w occur at 
values of H that form a Cantor set (see Section 1 8.4 and Figure 1 8.7) .  The 
larger the denominator of the rational fraction, the smaller the locked 
plateau. The "staircase" is self-similar at varying scales as illustrated by the 
segment of the staircase magnified in the box. The self-similarity is made 
more explicit in Figure 25.3b in which the devil's staircase is subdivided 
into six identical parts. 

25.3.3 Spatial distribution of spins 

How are the spins arranged for w =F- t ?  The answer is the simplest imaginable. 
For any rational value, w = % , they are arranged periodically with period 
q and with p in the up (+) position and q - p down (-). Given w, compute 

[n( l-w) lr, where [ lr means "the fractional value of". If [n( l-w )]f is less 
than w then assign sn the value + 1 otherwise sn = -1 .  For example, if w = t 
then the sequence of spins in a single period is: 

· · · - + - + - - + · · · .  

Since p = 3 ,  there are three spins in the up ( +) position and q - p in the 
down (-) position during each period of seven signs. Now consider w = { .  
This time the arrangement is quasiperiodic with a fraction i up and t12 down 
(remember t12 + i = 1 ) .  The arrangement conforms to the rabbit sequence 
(see Equation (20. 1 2a)) :  

+ - + + - + - + + . . .  (25.2) 

with up and down spins in the positions of the Wythoff pairs (see Table 20. 1 ) .  
The ratio of + to - spins is the golden mean. The same sequence of + and -
are attained by plotting a line with slope i (the ratio of 1 's to O's )  on 
Cartesian coordinates, as shown in Figure 25.4. This l ine is related to the 
one in Figure 25 . 1  for quasicrystals, and the corner the lady game of 
Figure 20. 1 2. The points at which this line crosses the vertical lines of the 
coordinate system are given the value 1 ,  while the points that cross the 
horizontal lines are assigned 0. As you can see, the rabbit sequence is the 
result. This represents a fully chaotic arrangement. 
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Figure 25.4 Square lattice and straight line �-I = t slope generates the rabbit sequence 

10 1 10  . . . .  The lower straight line has the silver-mean slope .J2 - 1  = i and generates another 

self-similar sequence. 

Another interesting arrangement is obtained for w = }z = 0. 707 1 . . . . 

In this case 1 - w = 0.2928 . . . = eJz where 8 = 1 + .J2 , the silver mean. 
The resulting sequence of l 's and O's (+ and -) is given by the line with 
slope i- = .fi - 1 = 0.414  . . . in Figure 25.4. The sequence, 

1 101 101 1 101 101 1 101 101 10 . . .  

referred to as the symbolic dynamics , is self-similar in the same sense as the 
rabbit sequence; if 1 is replaced by 1 10 and 0 is replaced by 1 in this 
sequence, it replicates itself. The sequence can also be generated, starting 
with 0, using the rules: 1 � 1 10, 0 � 1 .  Also notice that this sequence of 
O's and 1 's reproduces the approximating sequence to }z given by Sequence 

( 7.8) up to the 3rd position of the sequence (e.g., 1 10) f of the digits are 
1 's, up to the 7th position (e.g., 1 1  01 10 1 )  � of the digits are 1 's, up to the 
1 7th position g of the digits are l 's, etc. The symbolic dynamics could 
also have been produced by applying Beatty's Theorem (see Section 20.5) 
to the numbers X = J2 and y = e.fi since ; + ; = 1. I have found close 
connections between the symbolic dynamics that arises in the study of 
dynamical systems and systems of proportion in Architecture [Kap9]. 
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The PPS diagram in Figure 24. 10 also serves as a model for the Ising 
problem. When the floret numbers whose Zeckendorf notation ends in 1 
represent the up spins, and the ones that end in 0 represent the down spins, 
then if the floret numbers are projected onto the x or y-axes they assume 
the Rabbit Sequence - the spin distribution for w = { .  

25.4 The Circle Map and Chaos 

Just as the growth of plants can be looked at in terms of optimal placement of 
points around the periphery of a circle, the motion of any oscillating system 
can be viewed as the placement of points in time. In other words, it can be 
considered to be a dynamical system. The fundamentals of dynamical systems 
have been described by the physicist Leo Kadinoff [Kad] as follows: 

"In general, in a mapping problem one investigates the properties 
of a sequence of points zo, ZJ , zz, . . .  each point generated from the 
last by the application of a defined function R, 

These problems serve as simple models of dynamical behavior 
in which one can think of z1 as a description of the state of the 
system at a time t = j. One is particularly interested in universal 
or generic properties of the set {z1} - that is, properties which 
do not depend in detail upon the form of R. Any such robust 
property has a chance of being important for the behavior 
of the more complex dynamical systems manifested in the 
physical world." 

One kind of universal behavior concerns maps in which z is a real number 
and R is a map that obeys a kind of periodicity condition, 

R(z + 1 )  = 1 + R(z) .  

For example, 

K . R(z) = z + .Q - -sm21tZ, 
bt (25.2) 
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where the parameter K is a coupling strength parameter that is roughly 
related to the energy of the system and Q is a frequency ratio called the bare 
winding number. This frequency ratio may represent the ratio of a driving force 
frequency and the natural resonance frequency of an oscillator. (Think of a 
swing with a natural frequency of oscillation in which someone gives it a 
push at the height of its back-swing, or contemplate the frequency ratios of 
planetary or lunar orbits and spins.) In this model, the oscillation of points 
around a circle, i.e., mod 2rc are represented by their movement through 
the interval [0, 1] ,  i.e., mod 1 just as the optimal spacings of florets on a 
sunflower were represented by a sequence of points on a circle and an interval 
in Section 24.3. 

The dressed winding number w is defined as the limit of <n -zo as n � oo. n 
This winding number describes the average number of revolutions of the 
trajectory per time step. When w is rational, the system is said to be 
commensurable. For example, if w = �, then the orbit repeats itself after Q 
iterations after cycling P times through the interval [0, 1 ]  as in Coxeter's 
lattice model of phyllotaxis (see Section 24.2 . 1  ). Irrational winding numbers 
correspond to trajectories that never repeat themselves, although, as we have 
shown in Sections 14.3 and 14.4, they can be best approximated by rationals 
using continued fractions. The generative spiral of Coxeter's model (see 
Section 24.2. 1 )  in Figure 24.2 is an example of such a trajectory in the space 
dimension rather than time. 

One can talk about the stability of these orbits. As described in [Schr] : 

"Roughly speaking, if the frequency ratio of two coupled 
oscillators is a rational number fJ , then the coupling between 
the driving force and the "slaved" oscillator is particularly 
effective because of a kind of resonance: for every Q cycles of 
the driver the same physical situation prevails so that energy 
transfer effects have a chance to build up in a resonance-like 
manner. This resonance effect is strong, particularly if Q is a 
small integer (reasons will be described in the next section) .  
This is precisely what happened with our moon: resonant energy 
transfer between the moon and the earth by tidal forces 
slowed the moon's spinning motion until the spin period around 
its own axis locked ( the concept of mode locking will be 
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discussed in the next section) into the 28-day cycle of its 
revolution around the earth. As a consequence, the moon always 
shows us the same face." 

Perturb the initial point of an orbit with a rational winding number 
ever so slightly, and the resulting orbit is no longer periodic and may differ 
significantly from the original. Such orbits are said to be unstable. What about 
the stability of irrational orbits ? Their stability depends on the value of the 
parameter K in Equation (25 .2) .  If K < 1 ,  then the trajectories {z1} with 
irrational winding numbers fill up the entire interval as j -7 oo. However, 
depending on whether the orbit with an irrational winding number has 
"sufficiently close" neighboring orbits with rational winding numbers, the 
trajectories will be more or less stable. Orbits possessing sufficiently close 
neighboring orbits with rational winding numbers destabilize first as K 
is increased. 

When K = 1 ,  all orbits with irrational winding numbers have been 
destabilized, and further increase in K results in chaos. In the chaotic regime 
(K > 1 ) ,  the nature of the orbit depends on the exact position of the starting 
point, in that the smallest perturbation of the starting point may result in a 
totally different kind of orbit. Also, the trajectory may no longer spread out 
to fill the entire circle (or interval) ,  but instead bunches into a set of narrow 
disconnected regions of what mathematicians call total measure zero. Kadinoff 
has found that these intervals are directly related to a system of hierarchies 
within hierarchies of Fibonacci numbers. 

It is now easy to see why the golden mean is the key to understanding the 
structure of ordered and chaotic orbits. Since, as we showed in Section 20.3 , 
the golden mean is the "most irrational number", the orbit with the golden 
mean winding number has the most distant neighboring rational orbits of 
any winding number, and it is therefore the last orbit to be destabilized as 
the energy of the system K is increased. At K = 1 the golden mean orbit is 
destabilized, after which chaos ensues. At the "critical point" K = 1 ,  it can 
be shown [Schr] that if the trajectory point is assigned the number 1 when 
0.5 $ ZJ < 1 ,  and 0 when 0 $ ZJ < 0.5 , the symbolic dynamics of the trajectory 
follows the rabbit sequence: 10 1 1010 . . . . In this sense, the phyllotaxis 
trajectory described by the PPS of Section 24.4 could be thought of as the 
result of a circle map in a state of chaos. Florets are assigned a 1 (the last 
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digit of their Fibonacci or Zeckendorf representation is 1 )  when they are 
located to the left of the barrier in Figure 24. 10, and are assigned a 0 (the 
last digit of their Zeckendorf representation is 0) if they fall to the right; then 
the phyllotaxis sequence along the generative spiral (see Section 24.3 ) takes 
the form of the rabbit sequence. 

Section 1 7.4 showed that the symbolic dynamics of the logistic equation of 
chaos theory is related to the Towers of Hanoi sequence (20. 13a). Now we 
see that the symbolic dynamics of the circle map is related to the rabbit 
sequence. 

25.5 Mode Locking 

Mode locking is an important phenomenon exhibited by many dynamical 
systems. Perhaps the simplest illustration of this concept was given in [Schr] 
and involves the dynamics of a pedestrian traversing a series of streets with a 
traffic light at each comer. Depending on the pedestrian's walking speed he 
will sooner or later reach his destination. However, even two people with 
somewhat different walking speeds may reach their destinations at the same 
time. Although the faster walker may reach the comer sooner than his slower 
friend, he will have to wait for the red light, giving the slower walker a 
chance to catch up. The following is excerpted from Schroeder: 

"Suppose the pedestrian's speed is just under two-thirds of the 
'speed' of the traffic lights ( i.e., the distance between cross 
streets divided by the period of one complete green-yellow-red 
cycle) .  The red lights will force him to wait at every intersection 
and slow him down his speed by a factor of two. 

Assuming for simplicity that the green cycle, during which 
the walker can safely traverse the cross street, lasts exactly half 
a period, and that all lights are perfectly synchronized (as they 
certainly would not be on a one-way avenue) ,  then, in the 
walker's speed range ± < s < 1 , he is locked into an effective 
velocity v = ± . In general, in the speed range 

1 2 
-- :5 s :5 --
n + 1  2n + 1  

( 25.3 ) 
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where n = 1 ,  2, 3 ,  . . .  , he is locked into an effective velocity 
v = (n�l) .  But the walker can be locked into many other rational 
speeds. In fact, for 

2(k - 1) ::;; s ::;; 2k 
2(k - l)n + 1 2kn + 1 

(25.4) 

for k = 2, 3, 4, . . .  , the walker's effective velocity is locked 
into the lower limit of s. 

The staircase function corresponding to these locked 
intervals is illustrated in Figure 25.5. Although the graph of v 

versus s is not exactly self-similar, the locking pattern in the 
interval y < s < 1 is approximately re-scaled and repeated in the 
intervals n�I 

::;; 
s 

::;; � . One also notices that the locked-in 
plateaus become smaller and smaller for increasingly larger 
denominators in Inequalities ( 25.3) and ( 25.4 ) .  In fact, the 
locked-in speed intervals equal 1 divided by the product of the 
two denominators." 

0 1 3 1 
l 

Pedestrian velocity a 

a. 3 1 

Figure 25.5 (a) Progress of the frustrated Manhattan pedestrian as an illustration of mode 
locking. 
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25.6 Mode Locking and Natural Resonances 

This scenario of locked intervals, being reciprocally related to the 
denominators of certain reduced fractions, goes far beyond the street 
pedestrian. In fact, this is the principle behind the devil' s staircase. In the 
natural world the winding number can be thought of as the ratio of two 
natural frequencies, and these frequencies lock preferentially onto frequency 
ratios involving small integers. For example two grandfather clocks placed 
in different rooms within a house and started off vibrating at slightly different 
frequencies will, after an exchange of energy with each other, end up 
vibrating at the same frequency. The ratio of the planet Mercury's orbital 
frequency around the sun to its spin frequency around itself equals 1 , the 
ratio of two small integers. For similar reasons, the period of rotation of the 
moon around its axis equals the period of its movement about the earth. It 
is possible that the musical ratios that relate the periods of adjacent planets 
(see Section 5.6) may be another example of mode locking. 

In general, the ratio of these two natural frequencies, corresponding to 
the winding number, can be thought of as the number of windings of a 
spiral as it wraps around each of the two circuits on a torus (see Figure 1 2.4) 
during one cycle as we described in the "gears of life" (see Section 24.4). 
Figure 24.5 represents a devil's staircase in which each pair of phyllotaxis 
numbers (m, n) along the edges can be represented by a rational number .W 
(analogous to v in Figure 25.5) . For each such .W there corresponds a range 
of possible divergence angles spanning the interval between a pair of rationals 

QPn and QPn+t (analogous to s in Figure 25.5 ) .  The higher the pair of rationals n n+l 
are on the Farey tree, the broader is the divergence angle plateau. 

25.7 Mode Locking and the Harmonics of the Musical Scale 

From the musical point of view, a long thin string of uniform dimensions, 
fixed tension, and perfect elasticity displays its natural nodal points as it 
vibrates simultaneously in aliquot divisions of 2, 3 ,  4, etc. equal segments. In 
Figure 25.6a the Farey Sequence of Table 14.2 are reorganized to show how 
rational numbers equipartition the string. The first eight partials of an 
harmonic sequence on C are shown in Figure 25 .6b. Luminous tones known 
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Figure 25.6 Farey sequence (a) natural nodal points on a vibrating string; (b) the first eight 
partials of an harmonic sequence based on C. 

as harmonics are obtained by bowing, plucking, or striking the string at 
an antinode, and then touching very lightly at a node to suppress other 
harmonics. The lower harmonics gain power from nodal coincidences 
with higher harmonics. In performing experiments one should be aware that 
higher harmonics can always intrude at their own proper loci on the 
string when accidentally energized. Numbers from the Farey sequence (see 
Tables 14 . 1  and 14 .2)  with larger denominators require more care in 
activating and damping vibration. String stiffness can displace nodes near the 
ends. The cello A string is a perfect experimental instrument for sounding all 
Farey loci up to at least 16 ( integer values of the denominator) when bowed 
at optimum positions. 

The octave (-t) is the most stable of intervals and appears in row 0 of 
the Far1ey sequence while the musical fifth (-t) and fourth ( t) are the next 

\ 
most stable intervals appearing in rows 1 and 2. By stable here we mean a 
small tolerance to the left or right of the midpoint still produces the musical 
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harmonic. This is a form of mode-locking. The greater the tolerance the more 
stable the musical interval. In other words, the fifth is a less stable interval 
than the octave in that its position must be located more precisely on the 
string, while the third ( �) is less stable than the fifth since f is in row 1 
while } is in row 0 and � is in row 2. 

Row n of Figure 25 .6a represents the sequence of harmonics that can be 
gotten by subdividing the string into n equal parts. An actual musical tone 
generally contains a superposition of these harmonics with different energies 
depending on the instrument, and they are best understood through the study 
of Fourier analysis. The following sequence of tones (Row 8 of the Farey 
sequence given by Table 14.2) is gotten by arranging in order all of the 
rationals in Figure 25.6, i.e., all rationals with denominator 8 or less lying 
between 0 and 1 :  

0 ! ! ! ! ! � ! � � � ! i � � � � 1 i � � 2 1 ' 8 ' 7 ' 6 ' 5 ' 4 ' 7 ' 3 ' 8 ' 5 ' 7 ' 2 ' 7 ' s ' 8 ' 3 ' 7 ' 4 ' 5 ' 6 ' 7 ' 8 ' · 

Notice that the ratios between t and 1 represent all tones of the Just scale 
with the exception of the wholetone and semitone. Also included are the 
diminished seventh, 1 , augmented wholetones, i and � , and the tritone t .  
These 2 1  harmonics are also illustrated in Figure 8. 7 as the equipartition 
points derived from the Brunes star. This may also explain why the preferred 
ratio of periods between adjacent planets described in Section 5 .6 are ratios 
from the diatonic scale, and it validates Kepler's intuition that the motion of 
the planets are in some way correlated with the tones of the Just scale. 

25.8 Mode Locking and the Circle Map 

Returning to the circle map, without coupling (K = 0), the so-called dressed 
winding number w equals the bare winding number Q. But for K > 0, w 
"locks" into rational frequency ratios, preferably ratios with small 
denominators. Figure 25 .7 shows some of the frequency-locked regions in the 
K plane. The shaded regions are called Arnold tongues, after their discoverer, 
the Russian mathematician V.I. Arnol'd. In a sense, the infinite Farey tree, 
as depicted in Table 14. 1 ,  is a discrete version of the Arnol'd tongues. The 
regions corresponding to rational dressed winding numbers occur in the 
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same order as found in the infinite Farey sequence with the wider regions 
corresponding to rationals that appear higher on the infinite Farey tree. In a 
complete diagram, all rational winding numbers would be represented. This 
hierarchical arrangement is also shown in the devil's staircase of the 
circle map in Figure 25 .8. 

For K = 0, "most" of the unit interval is occupied by irrational dressed 
winding numbers in the same way that "most" of the interval [0, 1 ]  is occupied 
by irrational numbers (mathematicians say that the irrationals occupy a 
set of measure 1). We have stated in Section 25.4 that the trajectories 
corresponding to these winding numbers are stable in contrast to the unstable 
trajectories with rational winding numbers. Although the rational numbers 
within the interval [0, 1 ]  are densely placed (between any two rational 
numbers there is another), they are nevertheless far less numerous than the 
irrationals (they occupy a set of measure 0). 

As K increases the rational values of the dressed winding numbers occupy 
larger and larger islands of instability within a sea of irrational winding 
numbers of stable trajectories. Each rational winding number is mode-locked 
into an interval consistent with a range of values of .Q. For K values between 
0 and 1 the irrational winding numbers correspond to stable trajectories and 
occupy sets of measure between 0 and 1 .  
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Figure 25.8 Devil's staircase with plateaus at every rational number. 

For the critical value K = 1 of the coupling parameter, the infinitely many 
locked frequency intervals, corresponding to all the rational dressed winding 
numbers w between 0 and 1 ,  actually cover the entire range of bare winding 
numbers except for a set of measure zero. Irrational values of w correspond 
to an uncountably infinite set (see Section 14.2)  of zero measure -- in other 
words the irrationals are "squeezed" into a Cantor dust (see Section 18.4) 
between the rational values. As the trajectories corresponding to the 
irrational winding numbers are gathered into this Cantor dust they are 
destabilized. In a sense, the "last" irrationals gathered into the "dust" are 
the phyllotaxis angles {- and 't\ (the most irrational of all numbers) .  The 
intervals of bare winding numbers corresponding to each dressed winding 
number reveal the approximately self-similar devil's staircase shown in 
Figure 25.8. In a sense, the devil's staircase is nothing other than a 
representation of the limiting row of the Infinite Farey Sequence in Table 14.2, 
Fn as n � = ,  with each rational weighted according to its position in the 
Farey tree of Table 14 . 1 .  

For K > 1 ,  all of the irrational winding numbers are squeezed out, and 
remaining intervals of rational dressed winding numbers begin to intersect 
each other, which indicates that the realm of chaos has been entered. Now 
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adjust the nonlinear coupling strength K and the bare winding number .Q 
to a point just below the crossing of the two Arnold tongues for the locked 
frequency ratios t and f . The dressed winding number w for this point in 
the !2-K plane must be rational because K > 1 ,  but what should be its value? 
In fact, the rational value fJ that w assumes is given by t < fJ < f with Q 
as small as possible. This raises an interesting mathematical question with a 
curious but simple answer: What is the rational number between t and f with 
the smallest denominator? This question was answered in Section 14.3 ; it 
is the Farey sum of t ® f = i . 

What can such a strange strategy for forming intermediate fractions 
possibly mean? Schroeder gives an elegant answer to this question: 

"Physically, the frequency ratio t of two oscillators can be 
represented by a pulse: ( 1 )  followed by a non-pulse; (0) of the 
slower oscillator during every pair of beats of the faster oscillator. 
Thus the frequency ratio t is represented by the sequence 
101010 . . . or simply 1 0 . Similarly, the frequency ratio f is 

represented by two l 's repeated with a period of three, 1 10 .  
Now to form an intermediate frequency ratio, we simply 
alternate between the frequency ratios t ( i.e., 10 ) and f .  ( i.e., 
1 10 ) , yielding 10 1 1 0 ,  which represents the frequency ratio � 
(3 pulses during 5 clock times). So in averaging frequency 
ratios, taking mediants, as this operation is called, is not so 
strange after all." 

25.9 Blackmore's Strain Energy: A Unifying Concept 

Denis Blackmore and I have reapproached the range of physical models presented 
in this chapter - phyllotaxis, the Ising problem, and quasicrystals -
using the modern theories of dynamical systems (cf. [Bla] , [Kap7] ) .  We 
have used the concept of a lattice on a period torus, introduced in Section 24.4 
under the title "gears of life." We have modeled the action of nature upon 
a physical system, be it a plant, quasicrystalline structure, or magnetized set 
of charges by a "smooth" transformation that preserves lattice points, i.e., 
lattice points which are mapped smoothly to other lattice points in such a 
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Figure 25.9 An area preserving transformation 
transforms the coordinates of a lattice ( 1 ,  0) and 

(0, 1 )  to a pair (pl o ql )  and (pz, q l ). 

way that the area of each cell within the lattice is preserved. If a fundamental 
cell of a two-dimensional lattice is specified by vectors drawn to the 
coordinates (0, 1 )  and ( 1 , 0) ,  as shown in Figure 25.9, then an area preserving 
transformation transforms these coordinates to another pair of coordinates 
(Pt . qd, (pz, qz) with unit modulus, i.e. , IPtqz - pzqi i = 1 ,  two adjacent numbers 
from the infinite Farey Sequence (see Section 14.3 . 1 2) .  

Blackmore has introduced a strain energy on this lattice that measures the 
degree of deformation of the lattice cells, and he has shown that the 
transformation that minimizes this strain energy is the very transformation that 
transforms the coordinates of the unit cell: {(0, 1 ) , ( 1 ,  1 )} successively to: 
{( 1 , 1 ) , ( 1 , 2)} then {( 1 , 2 ) ,  (2 , 3 )}, {(2 , 3 ) ,(3 , 5 )}, {(3 , 5 ) ,  (5 , 8)} . . .  , in other 
words a Fibonacci sequence of coordinates. The minimum strain energy of 
a three-dimensional lattice maps the point (0, 0, 1 )  successively to (0, 1 ,  1 ) , 
( 1 , 1 , 2 ) ,  { 1 , 2 , 4) ,  (2 , 4, 7 ) ,  (4, 7 , 1 3 )  related to tribonacci numbers (see 
Section 2 1 .3 ) ; higher dimensional lattices are analogously related to 
n-bonacci numbers. Low values of the strain energy are related to pairs of 
coordinates found for small values of numerator and denominator from the 
Farey sequence. With this approach, many of the themes considered in 
this book are found to be interrelated. 

The recent work of Blackmore has created a rigorous framework for 
future study of phyllotaxis in the realm of dynamic systems theory, in which 
these self-organizing principles are orchestrated by the plant's need to 
minimize energy. 

25. 1 0  Conclusion 

The golden mean plays a central role in chaos theory and plant phyllotaxis 
while phyllotaxis exhibits phenomena familiar to other dynamical systems. 

file:///p1q2
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When the centers of the florets are projected onto a circle the mapping is 
structurally similar or isomorphic to the "circle map" of chaos theory. This 
leads to the conclusion that plants exist in the realm of mathematical chaos. 

Of course, through our study of dynamical system, I have only introduced 
some of the scaffolding at the basis of physical laws. As the musical scale does 
not constitute a symphony, to properly describe the natural world requires this 
scaffolding to be overlaid with information gathered with all of the senses. 
Nothing will replace the careful observer passionately involved with a study of 
the actual phenomena. 



Epilogue 

Beyond Measure has given some examples of the profound transformation of 
human consciousness that has taken place from ancient to modern times. 
In the opening chapter, the Australian Aborigines and the Fali tribe of the 
Cameroons were shown to be directly involved with the world around 
them. Their dwellings were as much a part of the natural order as are the 
beehive or the bird's nest. Birth, death, and other rites of passage were 
marked by symbols never far removed from their association to the Earth 
and the Heavens. From our modern Judeo-Christian perspective, these 
depictions have often been mistaken for idols rather than vehicles of direct 
participation that formed the world view of these people. Theodore Schwenk 
captures some of this direct participation through his association of flowing 
water with the metabolic, rhythmic, and sensitive functions of the human 
body. The Earth's atmosphere and biosphere were pictured as sensitive 
membranes mediating between Heaven and Earth. 

At some point in time however, the inner and outer worlds of 
consciousness divided and our modern experience of self-consciousness 
and introspection emerged from this split Uay]. Now man could have access 
to symbol systems detached from markers in the external world. Written 
language and the concept of number were the direct results. There was now 
access to imagination with which to build new worlds. Phenomena were 
not merely a source of direct outer experience, but were internalized as a 
set of hypotheses about how the world worked. Later, in our scientific era, 
these hypotheses were given a higher status and looked upon as truths 
about the nature of things. Lost in this transformation was the recognition 
that in order to describe phenomena, countless abstract notions not directly 
experienced such as atoms, forces, electromagnetic fields, etc. had to be 
created. Theories primarily concerned themselves with relations between 
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these quantities rather than the phenomena themselves. In all of this the 
observer was relegated to the role of an objective bystander. 

In the past century, in response to a series of paradoxes concerning the 
nature of previously established theories, science and mathematics have 
assumed more modest roles as interpreters of phenomena. Now science is 
satisfied merely with the creation of mathematical models that correlate 
observations rather than "final" explanations of events. The philosopher, 
Owen Barfield [Barf], refers to this kind of scientific inquiry as "saving the 
appearances" in a book by the same name. Science no longer seeks final 
causes but concerns itself with predictive power and its ability to act upon 
nature. In the last chapter of this book, all sights and smells of plants, 
animals, mountains and rivers have been suppressed leaving only nuances 
in their places in the guise of dynamical systems. However, these systems 
express certain outer characteristics of the observed phenomena while, at 
the same time, bringing to light certain hidden aspects. 

To a large extent, the models that we are creating to describe an outer 
world may well be more of a description of our own minds than of the 
phenomena that they claim to represent. Every inquiring mind now 
participates in creating the world, displacing the One God or panoply of 
Gods that once ruled the world. We now have it in our power to use this 
rich storehouse of symbolic imagery to create a world of beauty and bounty 
or chaos and inanity. The future will depend in large measure on the 
quality of our creations. 

Part I of the book explored, through number and geometry, man-made 
systems of language: systems of music, written language, and design as they 
may have been expressed at the threshold of these momentous changes. It 
is forever lost to us how ancient civilizations actually conceived of these 
systems. However, remnants of these creative impulses are to be found in 
Kepler's attempts to build a planetary system from the "harmony of the 
spheres", Brunes' recreations of the methods by which ancient temples 
might have been constructed, Michelangelo's preservation of the principles 
of an ancient geometry in the pavements of the Laurentian Library, and 
Tenen's description of the creation of the letters of the Hebrew 
alphabet. 

Part II followed the trail of this split in consciousness into the role that 
number and geometry has played in describing modern theories of fractals, 
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chaos theory, models of plant growth, and other dynamical systems. We saw 
that the richly textured system of number itself is the result of human 
creation from fullness and void or 1 and 0 and that star polygons that have 
been enshrined as sacred symbols are also at the basis of systems of proportion 
and cycles of dynamic systems in a state of chaos. Number and geometry 
could now be used to express notions beyond direct experience such as the 
infinitely large and the infinitesmal, higher dimensional spaces, the 
application of self-similarity to build complex systems from their simplest 
elements, and the manner in which a mind is able to think about itself. 
However, here we are also on shaky ground. To what degree are our detached 
symbol systems new idols rather than, as science portrays them, objective 
realities? What is the role of imagination in the creation of scientific theories? 
To what degree has imagination replaced direct perceptions of the natural 
world? I have tried to show that our innate sense of number resonates with 
our observations of the macroscopic and quantum worlds. 

Chaos theory is hinting to us that our symbol systems have built-in 
limits beyond which we have no access through the world of science. Our 
physical theories appear to have predictive power only for a finite duration 
of time. As we peer into the fractal structure of matter or out into the 
fractal structure of galaxies we see the same structure of solidness and 
gaping holes however strongly we resolve our telescopes or microscopes 
without a hint of reaching a limit. However, this built-in limitation to our 
observations and theories is nothing new. Ancient civilizations appear to 
have been aware that the solar and lunar cycles were incommensurate and 
that this found an echo in the problem of creating a musical scale that 
required only a finite number tones. This unresolvable dilemma in the 
description of the musical scale is an example of what I have meant by the 
expression "beyond measure". Nevertheless, astronomers have accommodated 
their instruments to these incommensurabilities, musicians have used these 
commas to acclimate the ear to the compromises inherent in the equal­
tempered scale, and great artists such as Michelangelo became adept at 
hiding these deviations in the grout lines of their creations. In a similar 
manner, artists of today are finding ways to build their art from the limitations 
inherent in the notions of fractals and chaos theory. Even with this inherent 
sense of limit our systems of scientific inquiry have led to extraordinary 
discoveries. Yet their incompleteness deny us access to worlds beyond. Are 
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our scientific and mathematical systems helping us to see the world clearly, 
or are they merely "saving the appearances" ? 

These are important questions. How we answer them will determine 
whether we use our powers to build a world which honors the exquisite 
forces that led to its creation or become so infatuated by shadows of this 
world that bubble up into our consciousness that we destroy the context in 
search of the atoms and genes at its base. Unlike our ancestors whose direct 
participation in the universe enabled them to be part of it, our tendency is 
to bend the world to our will. Here Plato's caution to heed a sense of limit 
is good tonic as is Goethe's warning to not mistake the scaffolding for the 
edifice. 

I would like Beyond Measure to be seen as an invitation to remove the 
barriers between disciplines within the sciences and mathematics, and even 
more, between the arts and the sciences. There is evidence that early man 
had already incorporated the diatonic scale into his music, a scale that 
Kepler believed to orchestrate the heavens. The musical scale also provided 
a context from which our modern concept of number was derived. Is it not 
possible that our brains are wired to the tones of the diatonic scale, an area 
for neuroscientists to explore? Why should the growth of plants remain the 
province only of botanists when this process bears the imprint of the golden 
mean and has the same signature as other natural systems at the edge of 
chaos ? Systems of proportion should not be of interest only to architects 
when they embody numbers that also supply the points of stability for 
dynamical systems of all kinds. Perhaps it was prescient for the architects 
of the Renaissance to proportion their buildings based on tones from the 
musical scale . Knowledge of these connections could also provide 
archaeologists with tools to decipher the fragments of the ancient world in 
our possession. When a butterfly's wings can radically change the results of 
a measurement, what do we mean by measure? We are thrown back to a 
priori resonances present already in our number system ready to be coaxed 
out to explain the world of our everyday reality as well as our dreams. 
Finally, why not make the artist's and musician's insight that the world 
cannot be observed from a single perspective also a credo that informs the 
sciences? Just as music is distinct as we move from key to key, and the scene 
of a painting depends on where the observer is placed, scientific theories 
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could be constructed which incorporate the observer along with the observed. 
These are the themes that I have tried to weave into this book. 

This book represents 20 years of collaboration during which time I have applied 
an interdisciplinary lens , centered upon mathematical analysis , to obtain many 
new insights into existing theories .  I have tried to form an amalgam between the 
material in Part I of this book which is closer to the world of observation and the 
material in Part II which calls upon the concept of number to go beyond the world 
of the senses . During the course of this study many common threads have emerged 
within and between diverse fields of science and technology , including the application 
of the musical scale , the development of measure , and the power of symmetry . 
By continuing this process in the future , we may be further along in appreciating 
our ancestor's understandings and thereby be closer to discovering the fundamental 
laws governing nature . 
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SERIES ON KNOTS AND EVERYTHING 
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The following should be corrected: 

On p. xvii, the second l ine from bottom: 
Replace "perviously" by "previously". 

On p. 72, Figure 3 . 1 1 ,  the fourth row: 
Replace "A3 AB2 AB2 B3" by "A3 A2B AB2 B3". 

On p. 1 1 1 , line 7: 
Replace " . . .  even they have . . .  " by " . . .  even though they have . . .  " . 

On p. 199, Figure 9.4, caption: 
Replace "TA zig-zag . . . .  " by "A zig-zag . . .  " . 

On p. 262, line 3:  
Replace " . . .  developed proposed . . .  " by " . . .  developed and proposed . . .  " .  

On p. 273, line 3 from bottom: 
Replace "tav" by "zadi-final". 

On p. 276, caption to Figure 1 2. 1 2: 
Replace "tav" by "zadi-final". 

On p. 286, line 1 8  from bottom: 
Replace "fot" by "for". 

On p. 4 10, line 3 from bottom: 
Replace "may" by "many". 
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On p. 4 15 ,  line 7 from bottom: 
Replace "a lot" by "alot" . 

On p. 470, Table 2 1 .2 ,  the seventh row: 
Replace " 1  6 5 20 1 5  6 1 "  by " 1  6 1 5  20 1 5  6 1 ". 

On p. 477, lines 6, 7, 8: 
Replace "F" by "F(. 

On p. 478, line 1 1 :  
Replace "1 will continue to refer to these polynomials as F(n) unless this 
leads to confusion. For example, the polynomial F(5)  . . . " by "1 will refer 
to these polynomials as F2(n) . For example, the polynomial F2(5)  . . .  " . 

On p. 479: 
(a) Line 10 from bottom: Replace "L(n)" by "L1 (n)"; 
(b) Line 7 from bottom: Replace "L(n) = xL(n - 1 )  + L(n - 2 )"  by 

"L1 (n) = xL1 (n - 1 )  + L1 (n - 2 )"; 
(c) Line 6 from bottom: Replace "L(3 )  = xL( 2 )  + L( l )" by "L1 (3 ) 

= xL1 (2 )  + L1 ( 1 )" ;  
(d) Line 2 from bottom: Replace "L(n)" by "Lz(n)". 

On p. 481 ,  line 2: 
Replace "L(n)" with "Lz(n)". 

On p. 483: 
(a) Line 5 from bottom: Replace "as" by "a"; 

1 
(b) Equation 22 .5b: Replace "- = T-1 + T-3 + T-5 + T-7 + · · ·" by 2 

1 
" - = e-1 + e-3 + e-5 + e-7 + . .  · ". 
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On p. 485 , Table 22 .6b: 

( ) Th h d .  £ th l l R l " sinh-l Jt ,  b " cosh-1 1)1,  a e ea mg 10r e ast co umn: ep ace e y e ; 
(b) The second row under the heading "Generalized Lucas numbers": 

Replace "33" by "34". 



On p. 489, line 3 :  
Replace "L(n)" by "Lz(n)". 

On p. 490: 
(a) Line 3: Replace "L(7)" by "Lz(7 )"; 
(b) Line 8: Replace "F(n - 1 )" by "F2(n - 1 )"; 
(c) Line 14: Replace "F(S)" by "F2(5)" ;  
(d) Line 1 8: Replace "F(7)" by "Fz(7)". 

On p. 492: 
(a) Line 1 from bottom: Replace "F( l l )" by "Fz( l l )"; 
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(b) Line 3 from bottom: Replace "L(n) and F(n - 1 )" by "L2(n) and 
Fz(n - 1 )"; 

(c) Line 4 from bottom: Replace "F(2n - 1 )" by "F2(2n - 1 )"; 
(d) Line 7 from bottom: Replace "L(S) X F(4)" by "Fz(S ) X F2(4)"; 
(e) Line 8 from bottom: Replace "L(S)" and "F(4)" by "Lz (S)" and "Fz(4)" 

respectively; 
(f) Line 9 from bottom: Replace "F(9)" by "F2 (9)". 

On p. 493: 
(a) All "L" and "F" should be subscripted as "Lz" and "F2"; 
(b) Line 8 from bottom: "dk" should be replaced by "Dk"; 
(c) Line 6 from bottom: omit "with the hopes that this will not confuse 

the reader". 

On p. 494: 
All subscripted variables with the symbol lower case "d" should be replaced 
by upper case "D". 

On p. 505, line 9 from bottom: 
Replace " . . .  complex number z" by " . . . complex number z with unit 
modulus". 

On p. 506, line 4 from bottom: 
Replace "(23.5a)" by "(23 .5a and b)". 



4 

On p. 507: 
(a) Equation "x H x2 + c" in 23.8 should be replaced by "z 1---7 z2 + c"; 
(b) Line 5 from bottom: Replace "when c is set equal to -2 i.e.," by 

"when c is set equal to -2 and complex z is restricted to the real values 
x, i.e.,". 

On p. 508, lines 14-1 7:  
Omit "For any complex value of c, the boundary in the complex plane of 
the prisoner set is what is called the Julia set. Therefore, the Julia sets for 
real values t � c � - 2 are what we refer to as "Cantor dusts."". 

On p. 5 1 1 ,  Table 23 . 1 :  
(a) In  Cyclotomic 1 1-gon: Replace "4", the last number in the fifth column 

by "5"; 
(b) In Cyclotomic 13-gon: Replace "k" in the first column by "K". 

On p. 5 13 ,  Equation 23 . 13 :  
Replace "(m2)P = l (mod n)" by "mp = ± 1 (mod n)". 

On p. 5 14, Table 23.2: 
(a) In the caption: Replace " . . .  such that (m2 )P = l (mod n)" by " . . .  such 

that mp = ± 1 (mod n)"; 
(b) In the first column: Replace "m2" by "m" and the integers, by "2 3 4 5". 

On p. 5 16, line 6: 
Replace " . .  . is that for n odd," by " . .  . is that for n an odd prime number,". 
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